| ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Generation of ultra-flat broad spectrum with stable single-pulse mode-locking in double-clad Yb-doped fiber laser |
| Minghui Sun(孙铭烩)1, Dongxin Gao(高懂昕)1, Yunli Yu(于芸丽)1, Wenyu Wang(王文煜)1, Qingcao Liu(刘情操)1, Weixin Liu(刘维新)2, and Yuzhai Pan(潘玉寨)1,† |
1 Department of Optoelectronics Science, Harbin Institute of Technology (Weihai), Weihai 264209, China; 2 Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai 264209, China |
|
|
|
|
Abstract We achieved an ultra-flat broad spectrum output with a 20-dB bandwidth of 77.85 nm in a double-clad Yb-doped fiber laser. The intensity difference between the highest and lowest points of the spectrum indicates a flatness better than 4 dB. More notably, this ultra-flat broad spectrum maintains a stable single-pulse mode-locking state. With the increase of pump power, an ultra-wide spectrum with a 20-dB bandwidth approaching 100 nm was formed at a pump power of 2.25 W. Additionally, we obtained a 9-pulse mode-locked state at another PC station with the same pump, which is the highest number of stable mode-locked pulse bursts observed so far with a first-order Raman frequency shift. This fiber laser shows its benefits of ultra-flat broad spectrum, high stability, and ease of fabrication, which provides a new method of obtaining the broadband light source for multiple practical applications.
|
Received: 18 April 2025
Revised: 13 June 2025
Accepted manuscript online: 01 July 2025
|
|
PACS:
|
42.55.Wd
|
(Fiber lasers)
|
| |
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12204132), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2021MF122), Shandong Province Technology- Based SME Innovation Enhancement Project (Grant No. 2024TSGC0715), and the Postgraduate Education Reform Project of Shandong Province, China (Grant No. SDYJSJGC2024107). |
Corresponding Authors:
Yuzhai Pan
E-mail: panyz@hitwh.edu.cn
|
Cite this article:
Minghui Sun(孙铭烩), Dongxin Gao(高懂昕), Yunli Yu(于芸丽), Wenyu Wang(王文煜), Qingcao Liu(刘情操), Weixin Liu(刘维新), and Yuzhai Pan(潘玉寨) Generation of ultra-flat broad spectrum with stable single-pulse mode-locking in double-clad Yb-doped fiber laser 2026 Chin. Phys. B 35 014206
|
[1] He X, Lin Q, Guo H, Sun J, Bai J, Hou L andWang K 2019 Appl. Phys. Express 12 072007 [2] Fermann M E and Hartl I 2009 Laser Phys. Lett. 6 11 [3] Tauser F, Leitenstorfer A and Zinth W 2003 Opt. Express 11 594 [4] Gattass R R and Mazur E 2008 Nat. Photon. 2 219 [5] Wang N, Cai J H, Qi X, Chen S P, Yang L J and Hou J 2018 Opt. Express 26 1689 [6] Hernandez-Garcia J C, Pottiez O and Estudillo-Ayala J M 2012 Laser Phys. 22 221 [7] Lin S S, Hwang S K and Liu J M 2014 Opt. Express 22 4152 [8] Fermann M E and Hartl I 2013 Nat. Photon. 7 868 [9] Chang G and Wei Z 2020 iScience 23 101101 [10] Gao X, Zhao Z, Cong Z, Gao G, Zhang A, Guo H, Yao G and Liu Z 2021 Opt. Express 29 9021 [11] Dong Z, Lin J, Li H, Zhang Y, Gu C, Yao P and Xu L 2020 Opt. Laser Technol. 130 106337 [12] Hu P, Mao J, Zhou X, Feng T, Nie H,Wang R, Zhang B, Li T, He J and Yang K 2023 Opt. Laser Technol. 161 109218 [13] Zheng W, Ruan S, Zhang M, Liu W, Zhang Y and Yang X 2013 Opt. Laser Technol. 50 145 [14] Shang X, Guo L, Gao J, Jiang S, Han X, Guo Q, Chen X, Li D and Zhang H 2019 Appl. Phys. B 125 193 [15] Woodward R and Kelleher E 2015 Appl. Sci. 5 1440 [16] Peng J, Zhu R, Shen T, Liu Y, Ma Y and Gu F 2023 Photonics 10 543 [17] Wang G, Baker-Murray A A and Blau W J 2019 Laser Photonics Rev. 13 1800282 [18] Ming Z and Tianshu W 2024 J. Appl. Opt. 45 834 [19] Ahmad H, Lutfi M A M, Ortaç B, Zaini M K A and Samion M Z 2024 Optical Fiber Technology 87 103861 [20] Hönninger C, Plötner M, Ortaç B, Ackermann R, Kammel R, Limpert J, Nolte S and Tünnermann A 2009 Proc. SPIE 7203, Commercial and Biomedical Applications of Ultrafast Lasers IX, 72030W (24 February 2009) [21] Kumar M, Islam M N, Terry F L, Freeman M J, Chan A, Neelakandan M and Manzur T 2012 Appl. Opt. 51 2794 [22] Mingareev I, Weirauch F, Olowinsky A, Shah L, Kadwani P and Richardson M 2012 Opt. Laser Technol. 44 2095 [23] Seddon A B 2011 Int. J. Appl. Glass Sci. 2 177 [24] Hui Z, Zhang X, XuW, Li N and Li X 2023 Optics & Laser Technology 157 108712 [25] Ahmad H, Ahmed M H M, Yusoff N, Ramli R and Samion M Z 2020 Optics & Laser Technology 130 106350 [26] Song R, Hou J, Chen S, Yang W and Lu Q 2012 Opt. Lett. 37 1529 [27] Gao J, Ge T and Wang Z 2014 Opt. Eng. 53 86109 [28] Wang H, Han H, Shao X, Zhang Z, Zhu J and Wei Z 2022 Appl. Phys. B 128 25 [29] Agrawal G P 2000 Nonlinear fiber optics/Nonlinear Science at the Dawn of the 21st Century (Berlin, Heidelberg: Springer Berlin Heidelberg), 2000 pp. 195–211 [30] Alcántara-Bautista U, Durán-Sánchez M, Addiel Espinosa-De-La-Cruz E, Armas-Rivera I, Bello-Jiménez M and Ibarra-Escamilla B 2024 Optics & Laser Technology 168 110016 [31] Carrillo-Delgado C M, Hernandez-Garcia J C, Estudillo-Ayala J M, Pottiez O, Lauterio-Cruz J P, Filoteo-Razo J D, Jauregui-Vazquez D, Sierra-Hernandez J M and Rojas-Laguna R 2020 Laser Phys. Lett. 17 065106 [32] Zhang B, Chen X, Zhang X, Liu Z, Li M, Liu J, Xu L, Hu Q and Li P 2022 Infrared Physics & Technology 120 103990 [33] Manriquez-Cobian N, Hernandez-Garcia J C, Estudillo-Ayala J M, Pottiez O, Filoteo-Razo J D and Rojas-Laguna R 2024 Optics & Laser Technology 172 110530 [34] Dong T, Lin J, Gu C, Yao P and Xu L 2021 Opt. Commun. 484 126679 [35] Li X, Zhang S, Hao Y and Yang Z 2014 Opt. Express, OE 22 6699 [36] Liu J, Li P, Li M, Chen X, Zhang B, Xu L, Hu Q and Gao L 2022 Optik 251 168490 [37] Yu H, Wang X, Zhou P, Xu X and Chen J 2014 Appl. Phys. B 117 305 [38] Liu C, Cao Y, Tang X, Tang M and Zhao L 2022 Chin. J. Lasers 49 2100002 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|