ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Zinc-oxide/PDMS-clad tapered fiber saturable absorber for passively mode-locked erbium-doped fiber laser |
F D Muhammad1,?, S A S Husin1, E K Ng2, K Y Lau3, C A C Abdullah1, and M A Mahdi2 |
1 Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; 2 Wireless and Photonics Networks Research Centre, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; 3 Department of Electronics and Nanoengineering, Tietotie 3, Aalto University, 02150 Espoo, Finland |
|
|
Abstract We propose and demonstrate a passively mode-locked erbium-doped fiber laser (EDFL) based on zinc-oxide/polydimethylsiloxane (ZnO/PDMS) saturable absorber (SA) that evanescently interacts with the light on a tapered fiber. The ZnO/PDMS composite is coated on the whole surface of the tapered fiber to guarantee the maximum efficiency of the SA device, with a measured insertion loss of 0.87 dB and a modulation depth of 6.4%. The proposed laser can generate soliton mode-locking operation at a threshold power of 33.07 mW. The generated output pulse yields a repetition rate and pulse width of 9.77 MHz and 1.03 ps, respectively. These results indicate that the proposed ZnO/PDMS-clad tapered fiber could be useful as an efficient, compatible, and low-cost SA device for ultrafast laser applications.
|
Received: 01 December 2020
Revised: 01 December 2020
Accepted manuscript online: 30 December 2020
|
PACS:
|
42.55.Wd
|
(Fiber lasers)
|
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
Fund: Project supported by the Ministry of Higher Education of Malaysia (MOHE) (Grant No. FRGS/1/2019/STG02/UPM/02/4). |
Corresponding Authors:
F D Muhammad
E-mail: farahdiana@upm.edu.my
|
Cite this article:
F D Muhammad, S A S Husin, E K Ng, K Y Lau, C A C Abdullah, and M A Mahdi Zinc-oxide/PDMS-clad tapered fiber saturable absorber for passively mode-locked erbium-doped fiber laser 2021 Chin. Phys. B 30 054204
|
[1] Luo Z Q, Wang J Z, Zhou M, Xu H Y, Cai Z P and Ye C C 2012 Laser Phys. Lett. 9 229 [2] Keller U 2003 Nature 424 831 [3] Brida D, Krauss G, Sell A and Leitenstorfer A 2014 Laser Photon. Rev. 8 409 [4] Zeng C, Liu X and Yun L 2013 Opt. Express 21 18937 [5] Grelu P and Akhmediev N 2012 Nat. Photon. 6 84 [6] Liu X, Cui Y, Han D, Yao X and Sun Z 2015 Sci. Rep. 5 9101 [7] Okhotnikov O, Grudinin A and Pessa M 2004 New J. Phys. 6 177 [8] Afifi G, AttaKhedr M, Badr Y, Danailov M, Sigalotti P, Cinquegrana P, Alsous M B and Galaly A R 2016 Optical Fiber Technology 29 74 [9] Set S Y, Yaguchi H, Tanaka Y and Jablonski M 2004 J. Lightwave Technol. 22 51 [10] Hasan T, Sun Z, Wang F, Bonaccorso F, Tan P H, Rozhin A G and Ferrari A C 2009 Adv. Mater. 21 3874 [11] Zhang H, Bao Q, Tang D, Zhao L and Loh K 2009 Appl. Phys. Lett. 95 141103 [12] Sun Z, Hasan T, Torrisi F, Popa D, Privitera G, Wang F, Bonaccorso F, Basko D M and Ferrari A C 2010 ACS Nano 4 803 [13] Cui Y and Liu X 2013 Opt. Express 21 18969 [14] Zhang H, Liu C, Qi X, Dai X, Fang Z and Zhang S 2009 Nat. Phys. 5 438 [15] Matte H S S R, Gomathi A, Manna A K, Late D J, Datta R, Pati S K and Rao C N R 2010 Angewandte Chemie 49 4059 [16] Ahmad H, Lee C S J, Ismail M A, Ali Z A, Reduan S A, Ruslan N E, Ismail M F and Harun S W 2016 Opt. Commun. 381 72 [17] Johnson J C, Knutsen K P, Yan H, Law M, Zhang Y, Yang P and Saykally R J 2004 Nano Lett. 4 197 [18] Wang Z L 2014 J. Phys.: Condens. Matter 16 25 [19] Ahmad H, Salim M A M, Ismail M F and Harun S W 2016 Laser Phys. 26 115107 [20] Aziz N A, Latiff A A, Lokman M Q, Hanafi E and Harun S W 2017 Chin. Phys. Lett. 34 044202 [21] Ahmad H, Lee C S J, Ismail M A, Ali Z A, Reduan S A, Ruslan N E and S W Harun S W 2016 Appl. Opt. 55 4277 [22] Song Y W, Jang S Y, Han W S and Bae M K 2010 Appl. Phys. Lett. 96 051122 [23] Mao D, Wang Y, Ma C, Han L, Jiang B, Gan X, Hua S, Zhang W, Mei T and Zhao J 2015 Sci. Rep. 5 7965 [24] Sotor J, Sobon G, Grodecki K and Abramski K M 2014 Appl. Phys. Lett. 104 251112 [25] Luo Z Q, Wang J Z, Zhou M, Xu H Y, Cai Z P and Ye C C 2012 Laser Phys. Lett. 9 229 [26] Choi S Y, Jeong H, Hong B H, Rotermund F and Yeom D 2014 Laser Phys. Lett. 11 015101 [27] Liu X M, Yang H R, Cui Y D, Chen G W, Yang Y, Wu X Q, Yao X K, Han D D, Han X X, Zeng C, Guo J, Li W L, Cheng G and Tong L M 2016 Sci. Rep. 6 26024 [28] Martinez A, Araimi M A, Dmitriev A, Lutsyk P, Li S, Mou C, Rozhin A, Sumetsky M and Turitsyn S 2017 APL Photon. 2 126103 [29] Kashiwagi K and Yamashita S 2009 Opt. Express 17 18364 [30] Khazaeinezhad R, Kassani S H, Jeong H, Park K J, Kim B Y, Yeom D and Oh K 2015 IEEE Photon. Technol. Lett. 27 1581 [31] Song Y, Morimune K, Set S Y and Yamashita S 2007 Appl. Phys. Lett. 90 021101 [32] Guo B, Yao Y, Yan P G, Xu K, Liu J J, Wang S G and Li Y 2016 IEEE Photon. Technol. Lett. 28 323 [33] Yan P, Liu A, Chen Y, Chen H, Ruan S, Guo C, Chen S, Li I L, Yang H, Hu J and Cao G 2015 Opt. Mater. Exp. 5 479 [34] Kieu K and Mansuripur M 2007 Opt. Lett. 32 2242 [35] Lau K Y, Ng E K, Abu Bakar M H, Abas A F, Alresheedi M T, Yusoff Z and Mahdi M A 2018 Opt. Laser Technol. 102 240 [36] Ng E K, Lau K Y, Lee H K, Abu Bakar M H, Kamil Y M, Omar M F and Mahdi M A 2020 Opt. Mater. 100 109619 [37] Ribut S H, Abdullah C A C, Mustafa M, Noorfazleena S and Azman A 2018 Mater. Res. Express 6 025016 [38] Garmire E 2000 IEEE J. Sel. Quantum Electron. 6 1094 [39] Sun Z, Popa D, Hasan T, Torrisi F, Wang F, Kelleher E J R, Travers J C, Nicolosi V and Ferrari A C 2010 Nano Res. 3 653 [40] Martinez A and Yamashita S 2011 Opt. Express 19 6155 [41] Khan A 2010 J. Pak. Mater. Soc. 4 1 [42] Zhang R, Yin P G, Wang N and Guo L 2009 Solid State Sci. 11 865 [43] Ashkenov N, Mbenkum B N, Bundesmann C, Riede V, Lorenz M, Spemann D, Kaidashev E M, Kasic A, Schubert M and Grundmann M 2003 J. Appl. Phys. 93 126 [44] Cai D, Neyer A, Kuckuk R and Heise H M 2010 J. Mol. Struct. 976 274 [45] Hönninger C, Paschotta R, Genoud F M, Moser M and Keller U 1999 J. Opt. Soc. Am. B 16 46 [46] Sun Z, Hasan T, Wang F, Rozhin A G, White I H and Ferrari A C 2010 Nano Res. 3 404 [47] von der Linde D 1986 Appl. Phys. B 39 201 [48] Zhang M, Kelleher E J R, Torrisi F, Sun Z, Hasan T, Popa D, Wang F, Ferrari A C and Taylor J R 2012 Opt. Express 20 25077 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|