ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Suppression of multi-pulse formation in all-polarization-maintaining figure-9 erbium-doped fiber mode-locked laser |
Jun-Kai Shi(石俊凯)1, Deng-Feng Dong(董登峰)1,2,†, Ying-Ling Pan(潘映伶)1, Guan-Nan Li(李冠楠)1, Yao Li(黎尧)1, Li-Tuo Liu(刘立拓)1, Xiao-Mei Chen(陈晓梅)1, and Wei-Hu Zhou(周维虎)1,2 |
1 Optoelectronic Technology R & D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract We report on a novel architecture to suppress the multi-pulse formation in an all-polarization-maintaining figure-9 erbium-doped fiber laser under high pump power. A 2× 2 fiber coupler is introduced into the phase-biased nonlinear amplifying loop mirror to extract part of intracavity laser power as a laser output, and the dependence of output couple ratio of fiber coupler on the mode-locking state is experimentally investigated. The intracavity nonlinear effect is mitigated by lowering the intracavity laser power, which is conducive to avoiding the multi-pulse formation. In the meantime, the loss-imbalance induced by fiber coupler is helpful in improving the self-starting ability. With the proposed laser structure, the multiple pulse formation can be suppressed and high power single pulse train can be obtained. The laser emits three pulse trains which is convenient for some applications. Finally, the output power values of three ports are 5.3 mW, 51.3 mW, and 13.2 mW, respectively. The total single pulse output power is 69.8 mW, which is more than 10 times the result without OC2. The total slope efficiency is about 10.1%. The repetition rate of three pulse trains is 21.17 MHz, and the pulse widths are 2.8 ps, 2.63 ps, and 6.66 ps, respectively.
|
Received: 31 July 2020
Revised: 26 August 2020
Accepted manuscript online: 15 October 2020
|
PACS:
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
42.55.Wd
|
(Fiber lasers)
|
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51905528), the Key Research Project of Bureau of Frontier Sciences and Education, Chinese Academy of Sciences (Grant No. QYZDY-SSW-JSC008), and the National Key Research and Development Project, China (Grant Nos. 2019YFB2005600 and 2018YFB2003403). |
Corresponding Authors:
†Corresponding author. E-mail: dongdengfeng@ime.ac.cn
|
Cite this article:
Jun-Kai Shi(石俊凯), Deng-Feng Dong(董登峰), Ying-Ling Pan(潘映伶), Guan-Nan Li(李冠楠), Yao Li(黎尧), Li-Tuo Liu(刘立拓), Xiao-Mei Chen(陈晓梅), and Wei-Hu Zhou(周维虎) Suppression of multi-pulse formation in all-polarization-maintaining figure-9 erbium-doped fiber mode-locked laser 2021 Chin. Phys. B 30 014206
|
1 Shi J K and Zhou W H 2018 Chin. Opt. Lett. 16 031404 2 Zhao X, Zheng Z, Liu L, Liu Y, Jiang Y X, Yang X and Zhu J S 2011 Opt. Express 19 1168 3 Huang S S, Wang Y G, Yan P G, Zhao J Q, Li H Q and Lin R Y 2015 Opt. Express 22 11417 4 Lian F Q, Fan Z W, Bai Z N, Li X H and Wang Q J 2015 Photon. Res. 3 129 5 Armas-Rivera I, Cuadrado-Laborde C, Carrascosa A, Kuzin E A, Beltran-Perez G, Diez A and Andres M V 2016 Opt. Express 24 9966 6 Hou L, Guo H Y, Wang Y G, Sun J, Lin Q M, Bai Y and Bai J T 2018 Opt. Express 26 9063 7 Han X X 2018 Appl. Opt. 57 807 8 Boguslawski J, Sotor J, Sobon G, Kozinski R, Librant K, Aksienionek M, Lipinska L and Abramski K 2015 Photon. Res. 3 119 9 Zhu G W, Zhu X S, Wang F Q, Xu S, Li Y, Guo X L, Balakrishnan K, Norwood R and Peyghambarian N 2016 IEEE Photon. Technol. Lett. 28 7 10 Li L, Su Y L, Wang Y G, Wang X, Wang Y S, Li X H, Mao D and Si J H2017 IEEE J. Sel. Top. Quantum Electron. 23 1 11 Wang J T, Jiang Z K, Chen H, Li J R, Yin J D, Wang J Z, He T C, Yan P G and Ruan S C 2018 Photon. Res. 6 535 12 Chen Y, Chen S Q, Liu J, Gao Y X and Zhang W J 2016 Opt. Express 24 13316 13 Hisyam M B, Rusdi M F M, Latiff A A and Harun S W2017 IEEE J. Sel. Top. Quantum Electron. 23 39 14 Zhang J, Kong Z Y, Liu Y Z, Wang A M and Zhang Z G 2016 Photon. Res. 4 27 15 Kuang Q Q, Zhan L, Gu Z C and Wang Z Q 2015 J. Lightwave Technol. 33 391 16 Szczepanek J, Kardas T M, Michalska M, Radzewicz C and Stepanenko Y 2015 Opt. Lett. 40 3500 17 Aleshkina S S, Bubnov M M, Senatorov A K, Lipatov D S and Likhachev M E 2016 Laser Phys. Lett. 13 035104 18 Liu W, Shi H S, Cui J H, Xie C, Song Y J, Wang C Y and Hu M L2018 Opt. Lett. 43 2848 19 Liu G Y, Wang A M and Zhang Z G 2017 IEEE Photon. Technol. Lett. 29 2055 20 Liu Z W, Ziegler Z M, Wright L G and Wise F W 2017 Optica 4 649 21 Liu W, Liao R Y, Zhao J, Cui J H, Song Y J, Wang C Y and Hu M L 2019 Optica 6 194 22 Wang Z K, Wang D N, Yang F, Li L J, Zhao C L, Xu B, Jin S Z, Cao S Y and Fang Z J 2018 Opt. Lett. 43 2078 23 Tegin U and Ortac B 2018 Opt. Lett. 43 1611 24 Wang Z T, Xu Y H, Dhanabalan S C, Sophia J, Zhao C J, Xu C W, Xiang Y J, Li J Q and Zhang H2016 IEEE Photon. J. 7 1503310 25 Chen Y, Wu M, Tang P H, Chen S Q, Du J, Jiang G B, Li Y, Zhao C J, Zhang H and Wen S C 2014 Laser Phys. Lett. 11 055101 26 Song Y, Chen S, Zhang Q, Li L, Zhao L, Zhang H and Tang D 2016 Opt. Express 24 25933 27 Luo A P, Zhu P F, Liu H, Zheng X W, Zhao N, Liu M, Cui H, Luo Z C and Xu W C 2014 Opt. Express 22 27019 28 Liu X M, Yao X K and Cui Y D 2018 Phys. Rev. Lett. 121 023905 29 Chouli S and Grelu P 2009 Opt. Express 17 11776 30 Chang W, Ankiewicz A, Soto-Crespo J M and Akhmediev N 2008 Phys. Rev. A 78 023830 31 Wu X, Tang D Y, Zhang H and Zhao L M 2009 Opt. Express 17 5580 32 Zhou Y, Lin W, Cheng H H, Wang W L, Qiao T, Qian Q, Xu S H and Yang Z M 2018 Opt. Express 26 10842 33 Zhao J Q, Li L, Zhao L M, Tang D Y, Shen D Y and Su L 2019 Photon. Res. 7 332 34 Shi J K, Li Y, Gao S Y, Pan Y L, Wang G M, Ji R Y and Zhou W H 2018 Chin. Opt. Lett. 16 121404 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|