Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 014206    DOI: 10.1088/1674-1056/abc153
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Suppression of multi-pulse formation in all-polarization-maintaining figure-9 erbium-doped fiber mode-locked laser

Jun-Kai Shi(石俊凯)1, Deng-Feng Dong(董登峰)1,2,†, Ying-Ling Pan(潘映伶)1, Guan-Nan Li(李冠楠)1, Yao Li(黎尧)1, Li-Tuo Liu(刘立拓)1, Xiao-Mei Chen(陈晓梅)1, and Wei-Hu Zhou(周维虎)1,2
1 Optoelectronic Technology R & D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  We report on a novel architecture to suppress the multi-pulse formation in an all-polarization-maintaining figure-9 erbium-doped fiber laser under high pump power. A 2× 2 fiber coupler is introduced into the phase-biased nonlinear amplifying loop mirror to extract part of intracavity laser power as a laser output, and the dependence of output couple ratio of fiber coupler on the mode-locking state is experimentally investigated. The intracavity nonlinear effect is mitigated by lowering the intracavity laser power, which is conducive to avoiding the multi-pulse formation. In the meantime, the loss-imbalance induced by fiber coupler is helpful in improving the self-starting ability. With the proposed laser structure, the multiple pulse formation can be suppressed and high power single pulse train can be obtained. The laser emits three pulse trains which is convenient for some applications. Finally, the output power values of three ports are 5.3 mW, 51.3 mW, and 13.2 mW, respectively. The total single pulse output power is 69.8 mW, which is more than 10 times the result without OC2. The total slope efficiency is about 10.1%. The repetition rate of three pulse trains is 21.17 MHz, and the pulse widths are 2.8 ps, 2.63 ps, and 6.66 ps, respectively.
Keywords:  figure-9 mode-locked fiber laser      nonlinear amplifying loop mirror      suppression of multi-pulse formation  
Received:  31 July 2020      Revised:  26 August 2020      Accepted manuscript online:  15 October 2020
PACS:  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.55.Wd (Fiber lasers)  
  42.60.Fc (Modulation, tuning, and mode locking)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51905528), the Key Research Project of Bureau of Frontier Sciences and Education, Chinese Academy of Sciences (Grant No. QYZDY-SSW-JSC008), and the National Key Research and Development Project, China (Grant Nos. 2019YFB2005600 and 2018YFB2003403).
Corresponding Authors:  Corresponding author. E-mail: dongdengfeng@ime.ac.cn   

Cite this article: 

Jun-Kai Shi(石俊凯), Deng-Feng Dong(董登峰), Ying-Ling Pan(潘映伶), Guan-Nan Li(李冠楠), Yao Li(黎尧), Li-Tuo Liu(刘立拓), Xiao-Mei Chen(陈晓梅), and Wei-Hu Zhou(周维虎) Suppression of multi-pulse formation in all-polarization-maintaining figure-9 erbium-doped fiber mode-locked laser 2021 Chin. Phys. B 30 014206

1 Shi J K and Zhou W H 2018 Chin. Opt. Lett. 16 031404
2 Zhao X, Zheng Z, Liu L, Liu Y, Jiang Y X, Yang X and Zhu J S 2011 Opt. Express 19 1168
3 Huang S S, Wang Y G, Yan P G, Zhao J Q, Li H Q and Lin R Y 2015 Opt. Express 22 11417
4 Lian F Q, Fan Z W, Bai Z N, Li X H and Wang Q J 2015 Photon. Res. 3 129
5 Armas-Rivera I, Cuadrado-Laborde C, Carrascosa A, Kuzin E A, Beltran-Perez G, Diez A and Andres M V 2016 Opt. Express 24 9966
6 Hou L, Guo H Y, Wang Y G, Sun J, Lin Q M, Bai Y and Bai J T 2018 Opt. Express 26 9063
7 Han X X 2018 Appl. Opt. 57 807
8 Boguslawski J, Sotor J, Sobon G, Kozinski R, Librant K, Aksienionek M, Lipinska L and Abramski K 2015 Photon. Res. 3 119
9 Zhu G W, Zhu X S, Wang F Q, Xu S, Li Y, Guo X L, Balakrishnan K, Norwood R and Peyghambarian N 2016 IEEE Photon. Technol. Lett. 28 7
10 Li L, Su Y L, Wang Y G, Wang X, Wang Y S, Li X H, Mao D and Si J H2017 IEEE J. Sel. Top. Quantum Electron. 23 1
11 Wang J T, Jiang Z K, Chen H, Li J R, Yin J D, Wang J Z, He T C, Yan P G and Ruan S C 2018 Photon. Res. 6 535
12 Chen Y, Chen S Q, Liu J, Gao Y X and Zhang W J 2016 Opt. Express 24 13316
13 Hisyam M B, Rusdi M F M, Latiff A A and Harun S W2017 IEEE J. Sel. Top. Quantum Electron. 23 39
14 Zhang J, Kong Z Y, Liu Y Z, Wang A M and Zhang Z G 2016 Photon. Res. 4 27
15 Kuang Q Q, Zhan L, Gu Z C and Wang Z Q 2015 J. Lightwave Technol. 33 391
16 Szczepanek J, Kardas T M, Michalska M, Radzewicz C and Stepanenko Y 2015 Opt. Lett. 40 3500
17 Aleshkina S S, Bubnov M M, Senatorov A K, Lipatov D S and Likhachev M E 2016 Laser Phys. Lett. 13 035104
18 Liu W, Shi H S, Cui J H, Xie C, Song Y J, Wang C Y and Hu M L2018 Opt. Lett. 43 2848
19 Liu G Y, Wang A M and Zhang Z G 2017 IEEE Photon. Technol. Lett. 29 2055
20 Liu Z W, Ziegler Z M, Wright L G and Wise F W 2017 Optica 4 649
21 Liu W, Liao R Y, Zhao J, Cui J H, Song Y J, Wang C Y and Hu M L 2019 Optica 6 194
22 Wang Z K, Wang D N, Yang F, Li L J, Zhao C L, Xu B, Jin S Z, Cao S Y and Fang Z J 2018 Opt. Lett. 43 2078
23 Tegin U and Ortac B 2018 Opt. Lett. 43 1611
24 Wang Z T, Xu Y H, Dhanabalan S C, Sophia J, Zhao C J, Xu C W, Xiang Y J, Li J Q and Zhang H2016 IEEE Photon. J. 7 1503310
25 Chen Y, Wu M, Tang P H, Chen S Q, Du J, Jiang G B, Li Y, Zhao C J, Zhang H and Wen S C 2014 Laser Phys. Lett. 11 055101
26 Song Y, Chen S, Zhang Q, Li L, Zhao L, Zhang H and Tang D 2016 Opt. Express 24 25933
27 Luo A P, Zhu P F, Liu H, Zheng X W, Zhao N, Liu M, Cui H, Luo Z C and Xu W C 2014 Opt. Express 22 27019
28 Liu X M, Yao X K and Cui Y D 2018 Phys. Rev. Lett. 121 023905
29 Chouli S and Grelu P 2009 Opt. Express 17 11776
30 Chang W, Ankiewicz A, Soto-Crespo J M and Akhmediev N 2008 Phys. Rev. A 78 023830
31 Wu X, Tang D Y, Zhang H and Zhao L M 2009 Opt. Express 17 5580
32 Zhou Y, Lin W, Cheng H H, Wang W L, Qiao T, Qian Q, Xu S H and Yang Z M 2018 Opt. Express 26 10842
33 Zhao J Q, Li L, Zhao L M, Tang D Y, Shen D Y and Su L 2019 Photon. Res. 7 332
34 Shi J K, Li Y, Gao S Y, Pan Y L, Wang G M, Ji R Y and Zhou W H 2018 Chin. Opt. Lett. 16 121404
[1] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
No Suggested Reading articles found!