Special Issue:
SPECIAL TOPIC — Nanophotonics
|
|
|
Reduced graphene oxide as saturable absorbers for erbium-doped passively mode-locked fiber laser |
Zhen-Dong Chen(陈振东)1, Yong-Gang Wang(王勇刚)1, Lu Li(李璐)2, Rui-Dong Lv(吕瑞东)1, Liang-Lei Wei(韦良雷)1, Si-Cong Liu(刘思聪)1, Jiang Wang(王江)1, Xi Wang(王茜)3 |
1 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China;
2 School of Science, Xi'an Institute of Posts and Telecommunications, Xi'an 710121, China;
3 State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China |
|
|
Abstract We demonstrate a nanosecond mode-locked erbium-doped fiber laser (EDFL) based on a reduced graphene oxide (RGO) saturable absorber (SA). The RGO SA is prepared by depositing the graphene oxide (GO) on fluorine mica through thermal reduction of GO. A scanning electron microscope (SEM), Raman spectrometer, and x-ray photoelectron spectroscopy (XPS) are adopted to analyze the RGO characteristics. The results show that the reduction degree of graphene oxide is very high. By embedding the RGO SA into the EDFL cavity, a stable mode-locked fiber laser is achieved with a central wavelength of 1567.29 nm and repetition rate of 12.66 MHz. The maximum output power and the minimum pulse duration are measured to be 18.22 mW and 1.38 ns respectively. As far as we know, the maximum output power of 18.22 mW is higher than those of other nanosecond mode-locked oscillators reported. Such a nanosecond pulse duration and megahertz repetition rate make this mode-locked erbium-doped fiber laser a suitable seed oscillator for high-power applications and chirped pulse amplifications.
|
Received: 02 February 2018
Revised: 31 March 2018
Accepted manuscript online:
|
PACS:
|
42.55.Wd
|
(Fiber lasers)
|
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
42.70.Nq
|
(Other nonlinear optical materials; photorefractive and semiconductor materials)
|
|
Fund: Project supported by the Central University Special Fund for Basic Research and Operating Expenses, China (Grant No. GK201702005), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2017JM6091), the National Natural Science Foundation of China (Grant No. 61705183), and the Fundamental Research Funds for the Central Universities (Grant No. 2017TS011). |
Corresponding Authors:
Yong-Gang Wang
E-mail: chinawygxjw@snnu.edu.cn
|
Cite this article:
Zhen-Dong Chen(陈振东), Yong-Gang Wang(王勇刚), Lu Li(李璐), Rui-Dong Lv(吕瑞东), Liang-Lei Wei(韦良雷), Si-Cong Liu(刘思聪), Jiang Wang(王江), Xi Wang(王茜) Reduced graphene oxide as saturable absorbers for erbium-doped passively mode-locked fiber laser 2018 Chin. Phys. B 27 084206
|
[1] |
Keller U 2003 Nature 424 831
|
[2] |
Sibbett W, Lagatsky A A and Brown C T A 2012 Opt. Express 20 6989
|
[3] |
Brida D, Krauss G, Sell A and Leitenstorfer A 2014 Laser Photon. Rev. 8 409
|
[4] |
Haus H A and Wong W S 1996 Rev. Mod. Phys. 68 423
|
[5] |
Saraceno C J, Schriber C, Mangold M, Hoffmann M, Heckl O H, Baer C R E, Golling M, Sudmeyer T and Keller U 2012 IEEE J. Sel. Top. Quantum Electron. 18 29
|
[6] |
Steinmeyer G, Sutter D H, Gallmann L, Matuschek N and Keller U 1999 Science 286 1507
|
[7] |
Luo Z C, Xu W C, Song C X, Luo A P and Chen W C 2009 Chin. Phys. B 18 2328
|
[8] |
Li X, Wang Y, Y, Zhao W, Yu X, Sun Z, Cheng X, Yu X, Zhang Y and Wang Q J 2014 Opt. Express 22 17227
|
[9] |
Hasan T, Sun Z P, Wang F Q, Bonaccorso F, Tan P H, Rozhin A G and Ferrar A C 2009 Adv. Mater. 21 3874
|
[10] |
Zhao X, Yan X Q, Ma Q, Zhang X L, Liu Z B and Tian J G 2013 Acta Opt. Sin. 33 0719001 (in Chinese)
|
[11] |
Song Y F, Li L, Zhang H, Shen D Y and Loh K P 2013 Opt. Express 21 10010
|
[12] |
Li H P, Zeng D B, Xia H D, Zhang S J, Tang X G and Liu Y 2013 Laser Phys. 23 035102
|
[13] |
Popa D, Sun Z, Torrisi F, Hasan T, Wang F and Ferrari A C 2010 Appl. Phys. Lett. 97 203106
|
[14] |
Zhang H, Tang D Y, Zhao L M, Bao Q L and Loh K P 2009 Opt. Express 17 17630
|
[15] |
Liu H, Luo A P, Wang F Z, Tang R, Liu M, Luo Z C, Xu W C, Zhao C J and Zhang H 2014 Opt. Lett. 39 4591
|
[16] |
Li L, Su Y L, WangY G, Wang X, Wang Y S, Li X H, Mao D and Si J H 2016 IEEE J. Sel. Top. Quantum Electron. 23 1100306
|
[17] |
Liu W J, Pang L H, Han H N, Liu M L, Lei M, Fang S B, Teng H and Wei Z Y 2017 Opt. Express 25 2950
|
[18] |
Shao H H, Liu Y M, Zhou X Y and Zhou G H 2014 Chin. Phys. B 23 107304
|
[19] |
Li L, Yan P G, Wang Y G, Duan L N, Sun H, and Si J H 2015 Chin. Phys. B 24 124204
|
[20] |
Li L, Wang Y G and Wang X 2017 Laser Phys. 27 085104
|
[21] |
Luo Z C, Liu M, Guo Z N, Jiang X F, Luo A P, Zhao C J, Yu X F, Xu W C and Zhang H 2015 Opt. Express 23 20030
|
[22] |
Xu Y H, Wang Z T, Guo Z N, Huang H, Xiao Q L, Zhang H and Yu X F 2016 Adv. Opt. Mater. 4 1223
|
[23] |
Jiang X T, Liu S X, Liang W Y, Luo S J, He Z L, Ge Y Q, Wang H D, Cao R, Zhang F, Wen Q, Li J Q, Bao Q L, Fan D Y and Zhang H 2018 Laser Photon. Rev. 12 1700229
|
[24] |
Lu L, Tang X, Cao R, Wu L M, Li Z J, Jing G H, Dong B Q, Lu S B, Li Y, Xiang Y J, Li J Q, Fan D Y and Zhang H 2017 Adv. Opt. Mater. 5 1700301
|
[25] |
Lu B L, Chen H W, Guo J X, Jiang M, Zhang R J, Bai J T and Ren Z Y 2011 Opt. Commun. 284 5353
|
[26] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[27] |
Liu N and Luo F 2008 Adv. Funct. Mater. 18 1518
|
[28] |
Chen T, Liao C R, Wang D N and Wang Y P 2014 Appl. Opt. 53 2828
|
[29] |
Sobon G, Sotor J, Jagiello J, Kozinski R, Zdrojek M, Holdynski M, Paletko P, Boguslawski J, Lipinska L and Abramski K M 2012 Opt. Express 20 19463
|
[30] |
Sun Z P, Hasan T, Torrisi T, Popa D, Privitera G, Wang F Q, Bonaccorso F, Basko D M and Ferrari A 2010 ACS Nano 4 803
|
[31] |
Liu X M, Cui Y D, Han D D, Yao X K and Sun Z P 2015 Sci. Rep. 5 9101
|
[32] |
Kadir N A A, Ismail1 E I, Latiff A A, Ahmad H, Arof H and Harun S W 2017 Chin. Phys. Lett. 34 014202
|
[33] |
Duan L N, Wang H S, Bai J, Wang Y G, Wei L L, Chen Z D, Yu J, Wen J and Li Y 2017 Opt. Eng. 56 116104
|
[34] |
Li K X, Song Y R, Tian J R, Yang H and Yu G 2017 Opt. Laser Technol. 96 18
|
[35] |
Xu J, Wu S, Liu J, Wang Q, Yang Q H andWang P 2012 Opt. Commun. 285 4466
|
[36] |
Wu X, Tang D Y, Zhang H and Zhao L M 2009 Opt. Express 17 5580
|
[37] |
Haiml M, Grange R and Keller U 2004 Appl. Phys. B 79 331
|
[38] |
Zhang X M, Gu C, Chen G L, Sun B, Xu L X, Wang A T and Ming M 2012 Opt. Lett. 37 1334
|
[39] |
Ismail M A, Harun S W, Zulkepely N R, Nor R M, Ahmad F and Ahmad H 2012 Appl. Opt. 51 8621
|
[40] |
Liu Z B, He X Y and Wang D 2011 Opt. Lett. 36 3024
|
[41] |
Xia H, Li H, Wang Z G, Chen Y F, Zhang X X, Tang X and Liu Y 2014 Opt. Commun. 330 147
|
[42] |
Popa D, Sun Z, Hasan T, Torrisi F, Wang F and Ferrari A C 2011 Appl. Phys. Lett. 98 073106
|
[43] |
Li H P, Xia H D, Wang Z G, Zhang X X, Chen Y F, Zhang S J, Tang X G and Liu Y 2014 Chin. Phys. B 23 024209
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|