Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 084206    DOI: 10.1088/1674-1056/27/8/084206
Special Issue: SPECIAL TOPIC — Nanophotonics
SPECIAL TOPIC—Nanophotonics Prev   Next  

Reduced graphene oxide as saturable absorbers for erbium-doped passively mode-locked fiber laser

Zhen-Dong Chen(陈振东)1, Yong-Gang Wang(王勇刚)1, Lu Li(李璐)2, Rui-Dong Lv(吕瑞东)1, Liang-Lei Wei(韦良雷)1, Si-Cong Liu(刘思聪)1, Jiang Wang(王江)1, Xi Wang(王茜)3
1 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China;
2 School of Science, Xi'an Institute of Posts and Telecommunications, Xi'an 710121, China;
3 State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China
Abstract  

We demonstrate a nanosecond mode-locked erbium-doped fiber laser (EDFL) based on a reduced graphene oxide (RGO) saturable absorber (SA). The RGO SA is prepared by depositing the graphene oxide (GO) on fluorine mica through thermal reduction of GO. A scanning electron microscope (SEM), Raman spectrometer, and x-ray photoelectron spectroscopy (XPS) are adopted to analyze the RGO characteristics. The results show that the reduction degree of graphene oxide is very high. By embedding the RGO SA into the EDFL cavity, a stable mode-locked fiber laser is achieved with a central wavelength of 1567.29 nm and repetition rate of 12.66 MHz. The maximum output power and the minimum pulse duration are measured to be 18.22 mW and 1.38 ns respectively. As far as we know, the maximum output power of 18.22 mW is higher than those of other nanosecond mode-locked oscillators reported. Such a nanosecond pulse duration and megahertz repetition rate make this mode-locked erbium-doped fiber laser a suitable seed oscillator for high-power applications and chirped pulse amplifications.

Keywords:  fiber lasers      mode-locked pulse      nonlinear optical materials      reduced graphene oxide  
Received:  02 February 2018      Revised:  31 March 2018      Accepted manuscript online: 
PACS:  42.55.Wd (Fiber lasers)  
  42.60.Fc (Modulation, tuning, and mode locking)  
  42.70.Nq (Other nonlinear optical materials; photorefractive and semiconductor materials)  
Fund: 

Project supported by the Central University Special Fund for Basic Research and Operating Expenses, China (Grant No. GK201702005), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2017JM6091), the National Natural Science Foundation of China (Grant No. 61705183), and the Fundamental Research Funds for the Central Universities (Grant No. 2017TS011).

Corresponding Authors:  Yong-Gang Wang     E-mail:  chinawygxjw@snnu.edu.cn

Cite this article: 

Zhen-Dong Chen(陈振东), Yong-Gang Wang(王勇刚), Lu Li(李璐), Rui-Dong Lv(吕瑞东), Liang-Lei Wei(韦良雷), Si-Cong Liu(刘思聪), Jiang Wang(王江), Xi Wang(王茜) Reduced graphene oxide as saturable absorbers for erbium-doped passively mode-locked fiber laser 2018 Chin. Phys. B 27 084206

[1] Keller U 2003 Nature 424 831
[2] Sibbett W, Lagatsky A A and Brown C T A 2012 Opt. Express 20 6989
[3] Brida D, Krauss G, Sell A and Leitenstorfer A 2014 Laser Photon. Rev. 8 409
[4] Haus H A and Wong W S 1996 Rev. Mod. Phys. 68 423
[5] Saraceno C J, Schriber C, Mangold M, Hoffmann M, Heckl O H, Baer C R E, Golling M, Sudmeyer T and Keller U 2012 IEEE J. Sel. Top. Quantum Electron. 18 29
[6] Steinmeyer G, Sutter D H, Gallmann L, Matuschek N and Keller U 1999 Science 286 1507
[7] Luo Z C, Xu W C, Song C X, Luo A P and Chen W C 2009 Chin. Phys. B 18 2328
[8] Li X, Wang Y, Y, Zhao W, Yu X, Sun Z, Cheng X, Yu X, Zhang Y and Wang Q J 2014 Opt. Express 22 17227
[9] Hasan T, Sun Z P, Wang F Q, Bonaccorso F, Tan P H, Rozhin A G and Ferrar A C 2009 Adv. Mater. 21 3874
[10] Zhao X, Yan X Q, Ma Q, Zhang X L, Liu Z B and Tian J G 2013 Acta Opt. Sin. 33 0719001 (in Chinese)
[11] Song Y F, Li L, Zhang H, Shen D Y and Loh K P 2013 Opt. Express 21 10010
[12] Li H P, Zeng D B, Xia H D, Zhang S J, Tang X G and Liu Y 2013 Laser Phys. 23 035102
[13] Popa D, Sun Z, Torrisi F, Hasan T, Wang F and Ferrari A C 2010 Appl. Phys. Lett. 97 203106
[14] Zhang H, Tang D Y, Zhao L M, Bao Q L and Loh K P 2009 Opt. Express 17 17630
[15] Liu H, Luo A P, Wang F Z, Tang R, Liu M, Luo Z C, Xu W C, Zhao C J and Zhang H 2014 Opt. Lett. 39 4591
[16] Li L, Su Y L, WangY G, Wang X, Wang Y S, Li X H, Mao D and Si J H 2016 IEEE J. Sel. Top. Quantum Electron. 23 1100306
[17] Liu W J, Pang L H, Han H N, Liu M L, Lei M, Fang S B, Teng H and Wei Z Y 2017 Opt. Express 25 2950
[18] Shao H H, Liu Y M, Zhou X Y and Zhou G H 2014 Chin. Phys. B 23 107304
[19] Li L, Yan P G, Wang Y G, Duan L N, Sun H, and Si J H 2015 Chin. Phys. B 24 124204
[20] Li L, Wang Y G and Wang X 2017 Laser Phys. 27 085104
[21] Luo Z C, Liu M, Guo Z N, Jiang X F, Luo A P, Zhao C J, Yu X F, Xu W C and Zhang H 2015 Opt. Express 23 20030
[22] Xu Y H, Wang Z T, Guo Z N, Huang H, Xiao Q L, Zhang H and Yu X F 2016 Adv. Opt. Mater. 4 1223
[23] Jiang X T, Liu S X, Liang W Y, Luo S J, He Z L, Ge Y Q, Wang H D, Cao R, Zhang F, Wen Q, Li J Q, Bao Q L, Fan D Y and Zhang H 2018 Laser Photon. Rev. 12 1700229
[24] Lu L, Tang X, Cao R, Wu L M, Li Z J, Jing G H, Dong B Q, Lu S B, Li Y, Xiang Y J, Li J Q, Fan D Y and Zhang H 2017 Adv. Opt. Mater. 5 1700301
[25] Lu B L, Chen H W, Guo J X, Jiang M, Zhang R J, Bai J T and Ren Z Y 2011 Opt. Commun. 284 5353
[26] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[27] Liu N and Luo F 2008 Adv. Funct. Mater. 18 1518
[28] Chen T, Liao C R, Wang D N and Wang Y P 2014 Appl. Opt. 53 2828
[29] Sobon G, Sotor J, Jagiello J, Kozinski R, Zdrojek M, Holdynski M, Paletko P, Boguslawski J, Lipinska L and Abramski K M 2012 Opt. Express 20 19463
[30] Sun Z P, Hasan T, Torrisi T, Popa D, Privitera G, Wang F Q, Bonaccorso F, Basko D M and Ferrari A 2010 ACS Nano 4 803
[31] Liu X M, Cui Y D, Han D D, Yao X K and Sun Z P 2015 Sci. Rep. 5 9101
[32] Kadir N A A, Ismail1 E I, Latiff A A, Ahmad H, Arof H and Harun S W 2017 Chin. Phys. Lett. 34 014202
[33] Duan L N, Wang H S, Bai J, Wang Y G, Wei L L, Chen Z D, Yu J, Wen J and Li Y 2017 Opt. Eng. 56 116104
[34] Li K X, Song Y R, Tian J R, Yang H and Yu G 2017 Opt. Laser Technol. 96 18
[35] Xu J, Wu S, Liu J, Wang Q, Yang Q H andWang P 2012 Opt. Commun. 285 4466
[36] Wu X, Tang D Y, Zhang H and Zhao L M 2009 Opt. Express 17 5580
[37] Haiml M, Grange R and Keller U 2004 Appl. Phys. B 79 331
[38] Zhang X M, Gu C, Chen G L, Sun B, Xu L X, Wang A T and Ming M 2012 Opt. Lett. 37 1334
[39] Ismail M A, Harun S W, Zulkepely N R, Nor R M, Ahmad F and Ahmad H 2012 Appl. Opt. 51 8621
[40] Liu Z B, He X Y and Wang D 2011 Opt. Lett. 36 3024
[41] Xia H, Li H, Wang Z G, Chen Y F, Zhang X X, Tang X and Liu Y 2014 Opt. Commun. 330 147
[42] Popa D, Sun Z, Hasan T, Torrisi F, Wang F and Ferrari A C 2011 Appl. Phys. Lett. 98 073106
[43] Li H P, Xia H D, Wang Z G, Zhang X X, Chen Y F, Zhang S J, Tang X G and Liu Y 2014 Chin. Phys. B 23 024209
[1] Wavelength switchable mode-locked fiber laser with a few-mode fiber filter
Shaokang Bai(白少康), Yujin Xiang(向昱锦), and Zuxing Zhang(张祖兴). Chin. Phys. B, 2023, 32(2): 024209.
[2] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[3] Thermoelectric characteristics of flexible reduced graphene oxide/silver selenide nanowire composites prepared by a facile vacuum filtration process
Zuo Xiao(肖佐), Yong Du(杜永), Qiufeng Meng(孟秋风), and Lei Wang(王磊). Chin. Phys. B, 2022, 31(2): 028103.
[4] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[5] Generation of domain-wall solitons in an anomalous dispersion fiber ring laser
Wen-Yan Zhang(张文艳), Kun Yang(杨坤), Li-Jie Geng(耿利杰), Nan-Nan Liu(刘楠楠), Yun-Qi Hao(郝蕴琦), Tian-Hao Xian(贤天浩), and Li Zhan(詹黎). Chin. Phys. B, 2021, 30(11): 114212.
[6] Optomechanical-organized multipulse dynamics in ultrafast fiber laser
Lin Huang(黄琳), Yu-Sheng Zhang(张裕生), and Yu-Dong Cui(崔玉栋). Chin. Phys. B, 2021, 30(11): 114203.
[7] Two-dimensionally controllable DSR generation from dumbbell-shaped mode-locked all-fiber laser
Zhi-Yuan Dou(窦志远), Bin Zhang(张斌), Jun-Hao Cai(蔡君豪), Jing Hou(侯静). Chin. Phys. B, 2020, 29(9): 094201.
[8] High sensitive pressure sensors based on multiple coating technique
Rizwan Zahoor, Chang Liu(刘畅), Muhammad Rizwan Anwar, Fu-Yan Lin(林付艳), An-Qi Hu(胡安琪), Xia Guo(郭霞). Chin. Phys. B, 2020, 29(2): 028102.
[9] The 2-μm to 6-μm mid-infrared supercontinuum generation in cascaded ZBLAN and As2Se3 step-index fibers
Jinmei Yao(姚金妹), Bin Zhang(张斌), Ke Yin(殷科), Jing Hou(侯静). Chin. Phys. B, 2019, 28(8): 084209.
[10] Monolithic all-fiber mid-infrared supercontinuum source based on a step-index two-mode As2S3 fiber
Jinmei Yao(姚金妹), Bin Zhang(张斌), Jing Hou(侯静). Chin. Phys. B, 2019, 28(6): 064205.
[11] Generation of wide-bandwidth pulse with graphene saturable absorber based on tapered fiber
Ren-Li Zhang(张仁栗), Jun Wang(王俊), Mei-Song Liao(廖梅松), Xia Li(李夏), Pei-Wen Guan(关珮雯), Yin-Yao Liu(刘银垚), Yan Zhou(周延), Wei-Qing Gao(高伟清). Chin. Phys. B, 2019, 28(3): 034203.
[12] Mode-locked fiber laser with MoSe2 saturable absorber based on evanescent field
Ren-Li Zhang(张仁栗), Jun Wang(王俊), Xiao-Yan Zhang(张晓艳), Jin-Tian Lin(林锦添), Xia Li(李夏), Pei-Wen Kuan(关珮雯), Yan Zhou(周延), Mei-Song Liao(廖梅松), Wei-Qing Gao(高伟清). Chin. Phys. B, 2019, 28(1): 014207.
[13] Two-dimensional materials-decorated microfiber devices for pulse generation and shaping in fiber lasers
Zhi-Chao Luo(罗智超), Meng Liu(刘萌), Ai-Ping Luo(罗爱平), Wen-Cheng Xu(徐文成). Chin. Phys. B, 2018, 27(9): 094215.
[14] Femtosecond Tm-Ho co-doped fiber laser using a bulk-structured Bi2Se3 topological insulator
Jinho Lee(李珍昊), Ju Han Lee(李周翰). Chin. Phys. B, 2018, 27(9): 094219.
[15] MoS2 saturable absorber prepared by chemical vapor deposition method for nonlinear control in Q-switching fiber laser
Meng-Li Liu(刘孟丽), Yu-Yi OuYang(欧阳毓一), Huan-Ran Hou(侯焕然), Ming Lei(雷鸣), Wen-Jun Liu(刘文军), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2018, 27(8): 084211.
No Suggested Reading articles found!