|
|
|
Enhancing thermodynamic performances and suppressing fluctuations in interacting quantum-dot thermoelectric engines |
| Jianhan Zhuang(庄剑涵)1,2, Qinyan Zou(邹沁研)1,2, Ziming Wang(王子明)1,2, Gaoyuan Chen(陈高远)1,2, Jian Sun(孙坚)1,2, Xiang Hao(郝翔)1,2, Chen Wang(王晨)3,†, and Jincheng Lu(陆金成)1,2,‡ |
1 Key Laboratory of Intelligent Optoelectronic Devices and Chips of Jiangsu Higher Education Institutions, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China; 2 Advanced Technology Research Institute of Taihu Photon Center, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China; 3 Department of Physics, Zhejiang Normal University, Jinhua 321004, China |
|
|
|
|
Abstract Quantum dot systems emerge as promising platforms for studying nanoscale thermoelectric effects and quantum fluctuation phenomena. In this work, we investigate the thermodynamic performance of a Coulomb-blockaded quantum dot operating as a quantum heat engine using the quantum master equation approach. By incorporating full counting statistics, we analyze both average transport properties and current fluctuations in this nanoscale system. We demonstrate that electron-electron interactions significantly enhance thermoelectric performance by increasing both the output power and energy conversion efficiency. Furthermore, we show that Coulomb interactions suppress current fluctuations while preserving the validity of the thermodynamic uncertainty relation. Our results provide important insights into the interplay between quantum effects and thermodynamic principles in nanoscale heat engines.
|
Received: 08 September 2025
Revised: 10 October 2025
Accepted manuscript online: 14 October 2025
|
|
PACS:
|
05.70.Ln
|
(Nonequilibrium and irreversible thermodynamics)
|
| |
05.40.Ca
|
(Noise)
|
| |
73.23.Hk
|
(Coulomb blockade; single-electron tunneling)
|
| |
73.50.Lw
|
(Thermoelectric effects)
|
| |
84.60.Rb
|
(Thermoelectric, electrogasdynamic and other direct energy conversion)
|
|
| Fund: This project was supported by the National Natural Science Foundation of China (Grant No. 12305050), the Natural Science Foundation of Jiangsu Higher Education Institutions of China (Grant No. 23KJB140017), and the Zhejiang Provincial Natural Science Foundation of China (Grant No. LZ25A050001). |
Corresponding Authors:
Chen Wang, Jincheng Lu
E-mail: wangchen@zjnu.cn;jinchenglu@usts.edu.cn
|
Cite this article:
Jianhan Zhuang(庄剑涵), Qinyan Zou(邹沁研), Ziming Wang(王子明), Gaoyuan Chen(陈高远), Jian Sun(孙坚), Xiang Hao(郝翔), Chen Wang(王晨), and Jincheng Lu(陆金成) Enhancing thermodynamic performances and suppressing fluctuations in interacting quantum-dot thermoelectric engines 2026 Chin. Phys. B 35 010508
|
[1] Benenti G, Casati G, Saito K and Whitney R S 2017 Phys. Rep. 694 1 [2] Maria Cangemi L, Bhadra C and Levy A 2024 Phys. Rep. 1087 1 [3] Landi G T and Paternostro M 2021 Rev. Mod. Phys. 93 035008 [4] Wang R, Wang C, Lu J and Jiang J H 2022 Adv. Phys. X 7 2082317 [5] Jiang J H, Entin-Wohlman O and Imry Y 2012 Phys. Rev. B 85 075412 [6] Lu J, Wang R, Liu Y and Jing J H 2017 J. Appl. Phys. 122 044301 [7] Liu Y, Lu J, Wang R, Wang C and Jiang J H 2020 Chin. Phys. B 29 40504 [8] Lu J, Liu J, Jiang J H and Wang C 2025 Phys. Rev. B 111 245407 [9] Sanchez R and Büttiker M 2011 Phys. Rev. B 83 085428 [10] Sanchez R, Sothmann B and Jordan A N 2015 Phys. Rev. Lett. 114 146801 [11] Liu D, Yuan J, Ruan H, Xu Y, Luo S, He J, He X, Ma Y and Wang J H 2024 Phys. Rev. A 110 042218 [12] Liu D, Hong Y, Luo S, He X, Wu Z and Wang J 2025 Phys. Rev. A 111 012203 [13] Xu Y, Ruan H, Luo S, Guo S, He X and Wang J 2025 Phys. Rev. E 111 L022101 [14] Ren J, Zhu J X, Gubernatis J E,Wang C and Li B 2012 Phys. Rev. B 85 155443 [15] Yang J, Elouard C, Splettstoesser J, Sothmann B, Sanchez R and Jordan A N 2019 Phys. Rev. B 100 045418 [16] Thierschmann H, Sanchez R, Sothmann B, Buhmann H and Molenkamp L W 2016 C. R. Phys. 17 1109 [17] Xi M, Wang R, Lu J and Jiang J H 2021 Chin. Phys. Lett. 38 088801 [18] Thierschmann H, Arnold F, Mittermüller M, Maier L, Heyn C, Hansen W, Buhmann H and Molenkamp L W 2015 New J. Phys. 17 113003 [19] Lu J, Wang R, Wang C and Jiang J H 2023 Entropy 25 e25030498 [20] Lu J, Wang Z, Wang R, Peng J, Wang C and Jiang J H 2023 Phys. Rev. B 107 075428 [21] Lu J, Wang Z, Ren J, Wang C and Jiang J H 2024 Phys. Rev. B 109 125407 [22] Cao B, Han C, Hao X, Wang C and Lu J 2024 Chin. Phys. Lett. 41 077302 [23] Barato A C and Seifert U 2015 Phys. Rev. Lett. 114 158101 [24] Horowitz J M and Gingrich T R 2020 Nat. Phys. 16 15 [25] Liu J and Segal D 2019 Phys. Rev. E 99 062141 [26] Liu J and Segal D 2021 Phys. Rev. E 103 032138 [27] Van Vu T and Hasegawa Y 2020 Phys. Rev. Research 2 013060 [28] Lu J, Wang Z, Peng J, Wang C, Jiang J H and Ren J 2022 Phys. Rev. B 105 115428 [29] Thierschmann H, Sanchez R, Sothmann B, Arnold F, Heyn C, Hansen W, Buhmann H and Molenkamp L W 2015 Nat. Nanotech. 10 854 [30] Willing S, Lehmann H, Volkmann M and Klinke C 2017 Sci. Adv. 3 e1603191 [31] Esposito M, Harbola U and Mukamel S 2009 Rev. Mod. Phys. 81 1665 [32] Campisi M, Hänggi P and Talkner P 2011 Rev. Mod. Phys. 83 771 [33] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press) [34] Agarwalla B K, Jiang J H and Segal D 2017 Phys. Rev. B 96 104302 [35] Lu J, Liu Y, Wang R, Wang C and Jiang J H 2019 Phys. Rev. B 100 115438 [36] Landi G T, Kewming M J, Mitchison M T and Potts P P 2024 PRX Quantum 5 020201 [37] Jiang J H 2014 Phys. Rev. E 90 042126 [38] Wang R, Lu J, Wang C and Jiang J H 2018 Sci. Rep. 8 2607 [39] Liu J, Jung K A and Segal D 2021 Phys. Rev. Lett. 127 200602 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|