Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 010508    DOI: 10.1088/1674-1056/ae12de
GENERAL Prev   Next  

Enhancing thermodynamic performances and suppressing fluctuations in interacting quantum-dot thermoelectric engines

Jianhan Zhuang(庄剑涵)1,2, Qinyan Zou(邹沁研)1,2, Ziming Wang(王子明)1,2, Gaoyuan Chen(陈高远)1,2, Jian Sun(孙坚)1,2, Xiang Hao(郝翔)1,2, Chen Wang(王晨)3,†, and Jincheng Lu(陆金成)1,2,‡
1 Key Laboratory of Intelligent Optoelectronic Devices and Chips of Jiangsu Higher Education Institutions, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China;
2 Advanced Technology Research Institute of Taihu Photon Center, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China;
3 Department of Physics, Zhejiang Normal University, Jinhua 321004, China
Abstract  Quantum dot systems emerge as promising platforms for studying nanoscale thermoelectric effects and quantum fluctuation phenomena. In this work, we investigate the thermodynamic performance of a Coulomb-blockaded quantum dot operating as a quantum heat engine using the quantum master equation approach. By incorporating full counting statistics, we analyze both average transport properties and current fluctuations in this nanoscale system. We demonstrate that electron-electron interactions significantly enhance thermoelectric performance by increasing both the output power and energy conversion efficiency. Furthermore, we show that Coulomb interactions suppress current fluctuations while preserving the validity of the thermodynamic uncertainty relation. Our results provide important insights into the interplay between quantum effects and thermodynamic principles in nanoscale heat engines.
Keywords:  quantum dot      thermoelectric engine      Coulomb interaction      current fluctuations      thermodynamic uncertainty relation  
Received:  08 September 2025      Revised:  10 October 2025      Accepted manuscript online:  14 October 2025
PACS:  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  05.40.Ca (Noise)  
  73.23.Hk (Coulomb blockade; single-electron tunneling)  
  73.50.Lw (Thermoelectric effects)  
  84.60.Rb (Thermoelectric, electrogasdynamic and other direct energy conversion)  
Fund: This project was supported by the National Natural Science Foundation of China (Grant No. 12305050), the Natural Science Foundation of Jiangsu Higher Education Institutions of China (Grant No. 23KJB140017), and the Zhejiang Provincial Natural Science Foundation of China (Grant No. LZ25A050001).
Corresponding Authors:  Chen Wang, Jincheng Lu     E-mail:  wangchen@zjnu.cn;jinchenglu@usts.edu.cn

Cite this article: 

Jianhan Zhuang(庄剑涵), Qinyan Zou(邹沁研), Ziming Wang(王子明), Gaoyuan Chen(陈高远), Jian Sun(孙坚), Xiang Hao(郝翔), Chen Wang(王晨), and Jincheng Lu(陆金成) Enhancing thermodynamic performances and suppressing fluctuations in interacting quantum-dot thermoelectric engines 2026 Chin. Phys. B 35 010508

[1] Benenti G, Casati G, Saito K and Whitney R S 2017 Phys. Rep. 694 1
[2] Maria Cangemi L, Bhadra C and Levy A 2024 Phys. Rep. 1087 1
[3] Landi G T and Paternostro M 2021 Rev. Mod. Phys. 93 035008
[4] Wang R, Wang C, Lu J and Jiang J H 2022 Adv. Phys. X 7 2082317
[5] Jiang J H, Entin-Wohlman O and Imry Y 2012 Phys. Rev. B 85 075412
[6] Lu J, Wang R, Liu Y and Jing J H 2017 J. Appl. Phys. 122 044301
[7] Liu Y, Lu J, Wang R, Wang C and Jiang J H 2020 Chin. Phys. B 29 40504
[8] Lu J, Liu J, Jiang J H and Wang C 2025 Phys. Rev. B 111 245407
[9] Sanchez R and Büttiker M 2011 Phys. Rev. B 83 085428
[10] Sanchez R, Sothmann B and Jordan A N 2015 Phys. Rev. Lett. 114 146801
[11] Liu D, Yuan J, Ruan H, Xu Y, Luo S, He J, He X, Ma Y and Wang J H 2024 Phys. Rev. A 110 042218
[12] Liu D, Hong Y, Luo S, He X, Wu Z and Wang J 2025 Phys. Rev. A 111 012203
[13] Xu Y, Ruan H, Luo S, Guo S, He X and Wang J 2025 Phys. Rev. E 111 L022101
[14] Ren J, Zhu J X, Gubernatis J E,Wang C and Li B 2012 Phys. Rev. B 85 155443
[15] Yang J, Elouard C, Splettstoesser J, Sothmann B, Sanchez R and Jordan A N 2019 Phys. Rev. B 100 045418
[16] Thierschmann H, Sanchez R, Sothmann B, Buhmann H and Molenkamp L W 2016 C. R. Phys. 17 1109
[17] Xi M, Wang R, Lu J and Jiang J H 2021 Chin. Phys. Lett. 38 088801
[18] Thierschmann H, Arnold F, Mittermüller M, Maier L, Heyn C, Hansen W, Buhmann H and Molenkamp L W 2015 New J. Phys. 17 113003
[19] Lu J, Wang R, Wang C and Jiang J H 2023 Entropy 25 e25030498
[20] Lu J, Wang Z, Wang R, Peng J, Wang C and Jiang J H 2023 Phys. Rev. B 107 075428
[21] Lu J, Wang Z, Ren J, Wang C and Jiang J H 2024 Phys. Rev. B 109 125407
[22] Cao B, Han C, Hao X, Wang C and Lu J 2024 Chin. Phys. Lett. 41 077302
[23] Barato A C and Seifert U 2015 Phys. Rev. Lett. 114 158101
[24] Horowitz J M and Gingrich T R 2020 Nat. Phys. 16 15
[25] Liu J and Segal D 2019 Phys. Rev. E 99 062141
[26] Liu J and Segal D 2021 Phys. Rev. E 103 032138
[27] Van Vu T and Hasegawa Y 2020 Phys. Rev. Research 2 013060
[28] Lu J, Wang Z, Peng J, Wang C, Jiang J H and Ren J 2022 Phys. Rev. B 105 115428
[29] Thierschmann H, Sanchez R, Sothmann B, Arnold F, Heyn C, Hansen W, Buhmann H and Molenkamp L W 2015 Nat. Nanotech. 10 854
[30] Willing S, Lehmann H, Volkmann M and Klinke C 2017 Sci. Adv. 3 e1603191
[31] Esposito M, Harbola U and Mukamel S 2009 Rev. Mod. Phys. 81 1665
[32] Campisi M, Hänggi P and Talkner P 2011 Rev. Mod. Phys. 83 771
[33] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
[34] Agarwalla B K, Jiang J H and Segal D 2017 Phys. Rev. B 96 104302
[35] Lu J, Liu Y, Wang R, Wang C and Jiang J H 2019 Phys. Rev. B 100 115438
[36] Landi G T, Kewming M J, Mitchison M T and Potts P P 2024 PRX Quantum 5 020201
[37] Jiang J H 2014 Phys. Rev. E 90 042126
[38] Wang R, Lu J, Wang C and Jiang J H 2018 Sci. Rep. 8 2607
[39] Liu J, Jung K A and Segal D 2021 Phys. Rev. Lett. 127 200602
[1] Orbital XY models in moiré superlattices
Yanqi Li(李彦琪), Yi-Jie Wang(王一杰), and Zhi-Da Song(宋志达). Chin. Phys. B, 2025, 34(2): 027303.
[2] Correcting on-chip distortion of control pulses with silicon spin qubits
Ming Ni(倪铭), Rong-Long Ma(马荣龙), Zhen-Zhen Kong(孔真真), Ning Chu(楚凝), Wei-Zhu Liao(廖伟筑), Sheng-Kai Zhu(祝圣凯), Chu Wang(王儲), Gang Luo(罗刚), Di Liu(刘頔), Gang Cao(曹刚), Gui-Lei Wang(王桂磊), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2025, 34(1): 010308.
[3] Coupling and characterization of a Si/SiGe triple quantum dot array with a microwave resonator
Shun-Li Jiang(江顺利), Tian-Yi Jiang(蒋天翼), Yong-Qiang Xu(徐永强), Rui Wu(吴睿), Tian-Yue Hao(郝天岳), Shu-Kun Ye(叶澍坤), Ran-Ran Cai(蔡冉冉), Bao-Chuan Wang(王保传), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2024, 33(9): 090311.
[4] Entangling two levitated charged nanospheres through Coulomb interaction
Guoyao Li(李国耀) and Zhangqi Yin(尹璋琦). Chin. Phys. B, 2024, 33(7): 074205.
[5] Nonlinear Seebeck and Peltier effects in a Majorana nanowire coupled to leads
Feng Chi(迟锋), Jia Liu(刘佳), Zhenguo Fu(付振国), Liming Liu(刘黎明), and Zichuan Yi(易子川). Chin. Phys. B, 2024, 33(7): 077301.
[6] Manipulation of internal blockage in triangular triple quantum dot
Yue Qi(齐月) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2024, 33(5): 057301.
[7] Photostability of colloidal single photon emitter in near-infrared regime at room temperature
Si-Yue Jin(靳思玥) and Xing-Sheng Xu(许兴胜). Chin. Phys. B, 2024, 33(3): 036102.
[8] Majorana tunneling in a one-dimensional wire with non-Hermitian double quantum dots
Peng-Bin Niu(牛鹏斌) and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2024, 33(1): 017403.
[9] Threshold-independent method for single-shot readout of spin qubits in semiconductor quantum dots
Rui-Zi Hu(胡睿梓), Sheng-Kai Zhu(祝圣凯), Xin Zhang(张鑫), Yuan Zhou(周圆), Ming Ni(倪铭), Rong-Long Ma(马荣龙), Gang Luo(罗刚), Zhen-Zhen Kong(孔真真), Gui-Lei Wang(王桂磊), Gang Cao(曹刚), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2024, 33(1): 010304.
[10] High-temperature continuous-wave operation of 1310 nm InAs/GaAs quantum dot lasers
Xiang-Bin Su(苏向斌), Fu-Hui Shao(邵福会), Hui-Ming Hao(郝慧明), Han-Qing Liu(刘汗青),Shu-Lun Li(李叔伦), De-Yan Dai(戴德炎), Xiang-Jun Shang(尚向军), Tian-Fang Wang(王天放),Yu Zhang(张宇), Cheng-Ao Yang(杨成奥), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥),Ying Ding(丁颖), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(9): 098103.
[11] Chiral current regulation and detection of Berry phase in triangular triple quantum dots
Yue Qi(齐月), Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), Jian-Hua Wei(魏建华), and Zhen-Gang Zhu(朱振刚). Chin. Phys. B, 2023, 32(8): 087304.
[12] Coherent manipulation of a tunable hybrid qubit via microwave control
Si-Si Gu(顾思思), Bao-Chuan Wang(王保传), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2023, 32(8): 087302.
[13] Circuit quantum electrodynamics with a quadruple quantum dot
Ting Lin(林霆), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2023, 32(7): 070307.
[14] Energy shift and subharmonics induced by nonlinearity in a quantum dot system
Yuan Zhou(周圆), Gang Cao(曹刚), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2023, 32(6): 060303.
[15] Adjusting amplitude of the stored optical solitons by inter-dot tunneling coupling in triple quantum dot molecules
Yin Wang(王胤), Si-Jie Zhou(周驷杰), Yong-He Deng(邓永和), and Qiao Chen(陈桥). Chin. Phys. B, 2023, 32(5): 054203.
No Suggested Reading articles found!