Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 014209    DOI: 10.1088/1674-1056/ade4b3
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Transmission property of one-dimensional Dirac-semimetal-defected photonic crystal in terahertz multi-bandgap

Ji-Kai Wang(王济凯), Li Jiang(姜丽)†, Xue-Fei Yang(杨雪菲), and Ji-He Zhao(赵继和)
Changchun University of Science and Technology, Changchun 130000, China
Abstract  A symmetrical one-dimensional (1D) photonic crystal structure with a Dirac-emimetal-defected layer is proposed. The material properties of the Dirac semimetal are governed by three key parameters: Fermi level, Fermi velocity, and degeneracy factor. Simulation results demonstrate that the proposed structure generates multiple photonic bandgaps within the THz frequency range. In the low-THz region, pronounced resonant transmission peaks emerge, enabling near-perfect filtering performance. The positions of these defect modes can be dynamically tuned by adjusting the Fermi level and degeneracy factor. In mid- and high-THz frequency bands, the Dirac semimetal begins to exhibit metallic behavior, leading to attenuation of the transmission peaks and the appearance of absorption. The elevation of the Fermi level delays the critical threshold for the transition from the dielectric state to the metallic state, while an increase in Fermi velocity suppresses metallic behavior. Therefore, enhancing both the Fermi level and Fermi velocity contributes to strengthening the defect peak intensity. Conversely, increasing the degeneracy factor strengthens the metallic characteristics, thereby disrupting the high-frequency photonic bandgap. Notably, the defect layer thickness and incident angle exert significant influence on the transmission behavior: a larger incident angle causes the defect peak to shift toward higher frequencies and reduces its intensity, whereas a thicker defect layer shifts the defect peak toward lower frequencies. The modulation effects of both parameters become more pronounced as frequency increases. Compared with conventional photonic crystals, our work can provide a tunable structure over transmission properties, offering novel strategies for designing tunable filters and optical sensors.
Keywords:  one-dimensional photonic crystal      Dirac semimetal      tunability      THz  
Received:  15 April 2025      Revised:  26 May 2025      Accepted manuscript online:  16 June 2025
PACS:  42.70.Qs (Photonic bandgap materials)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Corresponding Authors:  Li Jiang     E-mail:  jiangli@cust.edu.cn

Cite this article: 

Ji-Kai Wang(王济凯), Li Jiang(姜丽), Xue-Fei Yang(杨雪菲), and Ji-He Zhao(赵继和) Transmission property of one-dimensional Dirac-semimetal-defected photonic crystal in terahertz multi-bandgap 2026 Chin. Phys. B 35 014209

[1] Yordanov P, Priessnitz T, Kim M, Cristiani G, Logvenov G, Keimer B and Kaiser S 2023 Adv. Mater. 35 2305622
[2] Bradley S and Zhang X C 2002 Nat. Mater. 1 26
[3] Nagel M, Haring Bolivar P, Brucherseifer M, Kurz H, Boßerhoff A and Büttner R 2002 Appl. Phys. Lett. 80 154
[4] Dekorsy T, Auer H, Waschke C, Bakker H J, Roskos H G, Kurz H, Wagner V and Grosse P 1995 Phys. Rev. Lett. 74 738
[5] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[6] John S 1987 Phys. Rev. Lett. 58 2486
[7] Zhang H F, Liu S B, Kong X K, Bian B R and Zhao H C 2012 Opt. Commun. 285 5235
[8] Qi D, Wang X and Cheng Y Z 2016 Opt. Mater. 62 52
[9] Liu B, Shi J, Zhang J K, Li Z G, Chen Z S and Deng X S 2021 Opt. Mater. 111 110689
[10] Yang J Y, Ghimire I, Wu P C, Gurung S, Arndt C, Tsai D P and Lee H W H 2019 Nano Photon. 8 443
[11] Huang H L, Xiao N, Kariyado T, Amemiya T and Hu X 2023 Opt. Express 31 27006
[12] Jamshidi-Ghaleh K and Ebrahimpour Z 2013 Eur. Phys. J. D 67 27
[13] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2005 Nature 438 197
[14] Jahani D, Alidoust Ghatar A and Abaspour L 2020 Mater. Sci. Eng. B 261 114626
[15] Sattarian H, Shojaei S and Darabi E 2017 Opt. Quantum Electron. 49 319
[16] Schwierz F 2010 Nat. Nano Technol. 5 487
[17] Liu J T, Liu N H, Li J, Li X J and Huang J H 2012 Appl. Phys. Lett. 101 052104
[18] Liu Z K, Jiang J, Zhou B,Wang Z J, Zhang Y,Weng H M, Prabhakaran D, Hashimoto M, Han P, Dudin P, Kim T K, Hoesch M, Fang Z, Dai X, Shen Z X, Feng D L, Hussain Z and Chen Y 2014 Nat. Mater. 13 677
[19] Wang L X, Li C Z, Yu D P and Liao Z M 2016 Nat. Commun. 7 10769
[20] Liu C X, Zhang H J, Yan B H, Qi X, Frauenheim T, Dai X, Fang Z and Zhang S C 2010 Phys. Rev. B 81 041307
[21] Xu B, Dai Y M, Zhao L J, Wang K, Yang R, Zhang W, Liu J Y, Xiao H, Chen G F, Taylor A J, Yarotski D A, Prasankumar R P and Qiu X G 2016 Phys. Rev. B 93 121110
[22] Liang T, Gibson Q, Ali M N, Liu M H, Cava R J and Ong N P 2014 Nat. Mater. 14 280
[23] Young S M, Zaheer S, Teo J C Y, Kane C L, Mele E J and Rappe A M 2012 Phys. Rev. Lett. 108 140405
[24] Xiong J L, Kushwaha S, Liang T, Krizan J W, Hirschberger M, Wang W, Cava R J and Ong N P 2015 Science 350 413
[25] Neupane M, Xu S, Sankar R, Alidoust N, Bian G, Liu C, Belopolski I, Chang T R, Jeng H T, Lin H, Bansil A, Chou F C and Hasan M Z 2014 Nat. Commun. 5 3786
[26] Cao J X, Liang S F, Zhang C, Liu Y W, Huang J W, Zhao J H, Chen Z G, Wang Z J, Wang Q S, Zhao J, Li S Y, Dai X, Zou J, Xia Z C, Li L and Xiu F 2015 Nat. Commun. 6 7779
[27] Zhao Y K, Zhang Y P, Guo X H, Liu M D, Chen H, Liu S D and Zhang H Y 2017 J. Appl. Phys. 122 223108
[28] Wang Q, Wang X L, Zhang L W, Wang Y Q, Qiao W T, Han X, Cai X L and Yu W Y 2018 Appl. Opt. 58 94
[29] You Y and Da H X 2023 J. Opt. Soc. Am. B 40 360
[30] Wang T L, Zhang H Y, Zhang Y, Zhang Y P and Bai X Z 2020 Opt. Express 28 17434
[31] Meng H Y, Shang X J, Xue X X, Tang K Z, Xia S X, Zhai X, Liu Z R, Chen J H, Li H J and Wang L L 2019 Opt. Express 27 31062
[32] Wang L, Han L, Guo W L, Zhang L B, Yao C Y, Chen Z Q Z, Chen Y L, Guo C, Zhang K X, Kuo C N, Lue C S, Politano A, Xing H Z, Jiang M J, Yu X B, Chen X S and Lü W 2022 Light Sci. Appl. 11 53
[33] Li Y, Zhai X, Xia S X, Li H J and Wang L L 2020 J. Phys. D: Appl. Phys. 53 205106
[34] Chen H, Zhang H Y, Liu M D, Zhao Y K, Guo X H and Zhang Y P 2017 Opt. Mater. Express 7 3397
[35] Zheng Q W, Lü W, Xu J, Ye Y, Zhao X Z and Jiang L Y 2023 Chin. Phys. B 32 074208
[36] Yu Y J, Zhao Y, Ryu S M, Brus L E, Kim K S and Kim P 2009 Nano Lett. 9 3430
[37] Wang S, Lin B C, Zheng W Z, Yu D and Liao Z M 2018 Phys. Rev. Lett. 120 257701
[38] Moll P J W, Nair N, Helm T, Potter A C, Kimchi I, Vishwanath A and Analytis J 2016 Nature 535 266
[39] Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Hashimoto M, Shen Z X, Fang Z, Dai X, Hussain Z and Chen Y 2014 Science 343 864
[40] Kotov O V and Lozovik Y E 2016 Phys. Rev. B 93 235417
[41] Wu F, Liu T T, Chen M Y and Xiao S Y 2022 Opt. Express 30 33911
[42] Lang Y P, Liu Q G, Wang Q, Zhou X and Jia G Y 2023 Chin. Phys. B 32 017802
[1] Terahertz time-domain spectroscopy to probe laser-excited spin currents in a Co/Gd system
Fan Zhang(张帆), Bin Hong(洪宾), Michel Hehn, Rongqing Zhao(赵戎庆), Gregory Malinowski, Yong Xu(许涌), Stéphane Mangin, Jon Gorchon, and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2025, 34(12): 126701.
[2] Comprehensive study of the ultrafast photoexcited carrier dynamics in Sb2Te3-GeTe superlattices
Zhijiang Ye(叶之江), Zuanming Jin(金钻明), Yexin Jiang(蒋叶昕), Qi Lu(卢琦), Menghui Jia(贾梦辉), Dong Qian(钱冬), Xiamin Huang(黄夏敏), Zhou Li(李舟), Yan Peng(彭滟), and Yiming Zhu(朱亦鸣). Chin. Phys. B, 2024, 33(7): 074210.
[3] Photoinduced Floquet higher-order Weyl semimetal in C6 symmetric Dirac semimetals
Xin-Xin Xu(许欣欣), Zi-Ming Wang(王梓名), Dong-Hui Xu(许东辉), and Chui-Zhen Chen(陈垂针). Chin. Phys. B, 2024, 33(6): 067801.
[4] Controllable optical bistability in a Fabry-Pérot cavity with a nonlinear three-dimensional Dirac semimetal
Hong-Xia Yuan(袁红霞), Jia-Xue Li(李佳雪), Qi-Jun Ma(马奇军), Hai-Shan Tian(田海山),Yun-Yang Ye(叶云洋), Wen-Xin Luo(罗文昕), Xing-Hua Wu(吴杏华), and Le-Yong Jiang(蒋乐勇). Chin. Phys. B, 2024, 33(3): 034213.
[5] Ultrafast carrier dynamics in GeSn thin film based on time-resolved terahertz spectroscopy
Panpan Huang(黄盼盼), Youlu Zhang(张有禄), Kai Hu(胡凯), Jingbo Qi(齐静波), Dainan Zhang(张岱南), and Liang Cheng(程亮). Chin. Phys. B, 2024, 33(1): 017201.
[6] Enhanced and controllable reflected group delay based on Tamm surface plasmons with Dirac semimetals
Qiwen Zheng(郑棋文), Wenguang Lu(卢文广), Jiaqing Xu(胥加青),Yunyang Ye(叶云洋), Xinmin Zhao(赵新民), and Leyong Jiang(蒋乐勇). Chin. Phys. B, 2023, 32(7): 074208.
[7] Integrated system of traditional THz time-domain spectroscopy and asynchronous optical sampling
Jing Ding(丁晶), Qing-Hao Meng(孟庆昊), Yan Shen(沈妍), Chen-Xin Ding(丁晨鑫), Bo Su(苏波), Hai-Lin Cui(崔海林), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2023, 32(4): 048702.
[8] Numerical study on THz radiation of two-dimensional plasmon resonance of GaN HEMT array
Hongyang Guo(郭宏阳), Ping Zhang(张平), Shengpeng Yang(杨生鹏), Shaomeng Wang(王少萌), and Yubin Gong(宫玉彬). Chin. Phys. B, 2023, 32(4): 040701.
[9] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[10] Interfacial photoconductivity effect of type-I and type-II Sb2Se3/Si heterojunctions for THz wave modulation
Xue-Qin Cao(曹雪芹), Yuan-Yuan Huang(黄媛媛), Ya-Yan Xi(席亚妍), Zhen Lei(雷珍), Jing Wang(王静), Hao-Nan Liu(刘昊楠), Ming-Jian Shi(史明坚), Tao-Tao Han(韩涛涛), Meng-En Zhang(张蒙恩), and Xin-Long Xu(徐新龙). Chin. Phys. B, 2023, 32(11): 116701.
[11] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[12] THz wave generation by repeated and continuous frequency conversions from pump wave to high-order Stokes waves
Zhongyang Li(李忠洋), Qianze Yan(颜钤泽), Pengxiang Liu(刘鹏翔), Binzhe Jiao(焦彬哲), Gege Zhang(张格格), Zhiliang Chen(陈治良), Pibin Bing(邴丕彬), Sheng Yuan(袁胜), Kai Zhong(钟凯), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(7): 074209.
[13] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[14] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[15] Terahertz spectroscopy and lattice vibrational analysis of pararealgar and orpiment
Ya-Wei Zhang(张亚伟), Guan-Hua Ren(任冠华), Xiao-Qiang Su(苏晓强), Tian-Hua Meng(孟田华), and Guo-Zhong Zhao(赵国忠). Chin. Phys. B, 2022, 31(10): 103302.
No Suggested Reading articles found!