| ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Transmission property of one-dimensional Dirac-semimetal-defected photonic crystal in terahertz multi-bandgap |
| Ji-Kai Wang(王济凯), Li Jiang(姜丽)†, Xue-Fei Yang(杨雪菲), and Ji-He Zhao(赵继和) |
| Changchun University of Science and Technology, Changchun 130000, China |
|
|
|
|
Abstract A symmetrical one-dimensional (1D) photonic crystal structure with a Dirac-emimetal-defected layer is proposed. The material properties of the Dirac semimetal are governed by three key parameters: Fermi level, Fermi velocity, and degeneracy factor. Simulation results demonstrate that the proposed structure generates multiple photonic bandgaps within the THz frequency range. In the low-THz region, pronounced resonant transmission peaks emerge, enabling near-perfect filtering performance. The positions of these defect modes can be dynamically tuned by adjusting the Fermi level and degeneracy factor. In mid- and high-THz frequency bands, the Dirac semimetal begins to exhibit metallic behavior, leading to attenuation of the transmission peaks and the appearance of absorption. The elevation of the Fermi level delays the critical threshold for the transition from the dielectric state to the metallic state, while an increase in Fermi velocity suppresses metallic behavior. Therefore, enhancing both the Fermi level and Fermi velocity contributes to strengthening the defect peak intensity. Conversely, increasing the degeneracy factor strengthens the metallic characteristics, thereby disrupting the high-frequency photonic bandgap. Notably, the defect layer thickness and incident angle exert significant influence on the transmission behavior: a larger incident angle causes the defect peak to shift toward higher frequencies and reduces its intensity, whereas a thicker defect layer shifts the defect peak toward lower frequencies. The modulation effects of both parameters become more pronounced as frequency increases. Compared with conventional photonic crystals, our work can provide a tunable structure over transmission properties, offering novel strategies for designing tunable filters and optical sensors.
|
Received: 15 April 2025
Revised: 26 May 2025
Accepted manuscript online: 16 June 2025
|
|
PACS:
|
42.70.Qs
|
(Photonic bandgap materials)
|
| |
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
| |
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
Corresponding Authors:
Li Jiang
E-mail: jiangli@cust.edu.cn
|
Cite this article:
Ji-Kai Wang(王济凯), Li Jiang(姜丽), Xue-Fei Yang(杨雪菲), and Ji-He Zhao(赵继和) Transmission property of one-dimensional Dirac-semimetal-defected photonic crystal in terahertz multi-bandgap 2026 Chin. Phys. B 35 014209
|
[1] Yordanov P, Priessnitz T, Kim M, Cristiani G, Logvenov G, Keimer B and Kaiser S 2023 Adv. Mater. 35 2305622 [2] Bradley S and Zhang X C 2002 Nat. Mater. 1 26 [3] Nagel M, Haring Bolivar P, Brucherseifer M, Kurz H, Boßerhoff A and Büttner R 2002 Appl. Phys. Lett. 80 154 [4] Dekorsy T, Auer H, Waschke C, Bakker H J, Roskos H G, Kurz H, Wagner V and Grosse P 1995 Phys. Rev. Lett. 74 738 [5] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059 [6] John S 1987 Phys. Rev. Lett. 58 2486 [7] Zhang H F, Liu S B, Kong X K, Bian B R and Zhao H C 2012 Opt. Commun. 285 5235 [8] Qi D, Wang X and Cheng Y Z 2016 Opt. Mater. 62 52 [9] Liu B, Shi J, Zhang J K, Li Z G, Chen Z S and Deng X S 2021 Opt. Mater. 111 110689 [10] Yang J Y, Ghimire I, Wu P C, Gurung S, Arndt C, Tsai D P and Lee H W H 2019 Nano Photon. 8 443 [11] Huang H L, Xiao N, Kariyado T, Amemiya T and Hu X 2023 Opt. Express 31 27006 [12] Jamshidi-Ghaleh K and Ebrahimpour Z 2013 Eur. Phys. J. D 67 27 [13] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2005 Nature 438 197 [14] Jahani D, Alidoust Ghatar A and Abaspour L 2020 Mater. Sci. Eng. B 261 114626 [15] Sattarian H, Shojaei S and Darabi E 2017 Opt. Quantum Electron. 49 319 [16] Schwierz F 2010 Nat. Nano Technol. 5 487 [17] Liu J T, Liu N H, Li J, Li X J and Huang J H 2012 Appl. Phys. Lett. 101 052104 [18] Liu Z K, Jiang J, Zhou B,Wang Z J, Zhang Y,Weng H M, Prabhakaran D, Hashimoto M, Han P, Dudin P, Kim T K, Hoesch M, Fang Z, Dai X, Shen Z X, Feng D L, Hussain Z and Chen Y 2014 Nat. Mater. 13 677 [19] Wang L X, Li C Z, Yu D P and Liao Z M 2016 Nat. Commun. 7 10769 [20] Liu C X, Zhang H J, Yan B H, Qi X, Frauenheim T, Dai X, Fang Z and Zhang S C 2010 Phys. Rev. B 81 041307 [21] Xu B, Dai Y M, Zhao L J, Wang K, Yang R, Zhang W, Liu J Y, Xiao H, Chen G F, Taylor A J, Yarotski D A, Prasankumar R P and Qiu X G 2016 Phys. Rev. B 93 121110 [22] Liang T, Gibson Q, Ali M N, Liu M H, Cava R J and Ong N P 2014 Nat. Mater. 14 280 [23] Young S M, Zaheer S, Teo J C Y, Kane C L, Mele E J and Rappe A M 2012 Phys. Rev. Lett. 108 140405 [24] Xiong J L, Kushwaha S, Liang T, Krizan J W, Hirschberger M, Wang W, Cava R J and Ong N P 2015 Science 350 413 [25] Neupane M, Xu S, Sankar R, Alidoust N, Bian G, Liu C, Belopolski I, Chang T R, Jeng H T, Lin H, Bansil A, Chou F C and Hasan M Z 2014 Nat. Commun. 5 3786 [26] Cao J X, Liang S F, Zhang C, Liu Y W, Huang J W, Zhao J H, Chen Z G, Wang Z J, Wang Q S, Zhao J, Li S Y, Dai X, Zou J, Xia Z C, Li L and Xiu F 2015 Nat. Commun. 6 7779 [27] Zhao Y K, Zhang Y P, Guo X H, Liu M D, Chen H, Liu S D and Zhang H Y 2017 J. Appl. Phys. 122 223108 [28] Wang Q, Wang X L, Zhang L W, Wang Y Q, Qiao W T, Han X, Cai X L and Yu W Y 2018 Appl. Opt. 58 94 [29] You Y and Da H X 2023 J. Opt. Soc. Am. B 40 360 [30] Wang T L, Zhang H Y, Zhang Y, Zhang Y P and Bai X Z 2020 Opt. Express 28 17434 [31] Meng H Y, Shang X J, Xue X X, Tang K Z, Xia S X, Zhai X, Liu Z R, Chen J H, Li H J and Wang L L 2019 Opt. Express 27 31062 [32] Wang L, Han L, Guo W L, Zhang L B, Yao C Y, Chen Z Q Z, Chen Y L, Guo C, Zhang K X, Kuo C N, Lue C S, Politano A, Xing H Z, Jiang M J, Yu X B, Chen X S and Lü W 2022 Light Sci. Appl. 11 53 [33] Li Y, Zhai X, Xia S X, Li H J and Wang L L 2020 J. Phys. D: Appl. Phys. 53 205106 [34] Chen H, Zhang H Y, Liu M D, Zhao Y K, Guo X H and Zhang Y P 2017 Opt. Mater. Express 7 3397 [35] Zheng Q W, Lü W, Xu J, Ye Y, Zhao X Z and Jiang L Y 2023 Chin. Phys. B 32 074208 [36] Yu Y J, Zhao Y, Ryu S M, Brus L E, Kim K S and Kim P 2009 Nano Lett. 9 3430 [37] Wang S, Lin B C, Zheng W Z, Yu D and Liao Z M 2018 Phys. Rev. Lett. 120 257701 [38] Moll P J W, Nair N, Helm T, Potter A C, Kimchi I, Vishwanath A and Analytis J 2016 Nature 535 266 [39] Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Hashimoto M, Shen Z X, Fang Z, Dai X, Hussain Z and Chen Y 2014 Science 343 864 [40] Kotov O V and Lozovik Y E 2016 Phys. Rev. B 93 235417 [41] Wu F, Liu T T, Chen M Y and Xiao S Y 2022 Opt. Express 30 33911 [42] Lang Y P, Liu Q G, Wang Q, Zhou X and Jia G Y 2023 Chin. Phys. B 32 017802 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|