| CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Terahertz time-domain spectroscopy to probe laser-excited spin currents in a Co/Gd system |
| Fan Zhang(张帆)1, Bin Hong(洪宾)2, Michel Hehn3, Rongqing Zhao(赵戎庆)1,4, Gregory Malinowski3, Yong Xu(许涌)4,†, Stéphane Mangin3, Jon Gorchon3,‡, and Weisheng Zhao(赵巍胜)1,4 |
1 Hefei Innovation Research Institute, Beihang University, Hefei 230013, China; 2 Center of Free Electron Laser & High Magnetic Field, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China; 3 Université de Lorraine, CNRS, IJL, F-54000 Nancy, France; 4 Fert Beijing Institute, School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China |
|
|
|
|
Abstract Single shot all-optical switching of the magnetization by femtosecond laser pulses in rare-earth transition-metal ferrimagnetic materials is particularly promising for future ultrafast magnetic storage applications. Moreover, ultrafast laser-generated spin currents appear to play an important role in the switching process. Here, we try to separately detect the spin current from Gd in a Co/Gd bilayer system using terahertz time-domain spectroscopy. To this aim, we use different capping, buffer and embedded layers in order to tune the spin-to-charge and spin-current propagation and identify currents from each of the layers. We attribute the observed THz emission in all layers to the transition metal demagnetization induced spin currents, and detect no contribution from the Gd demagnetization. We attribute this absence of Gd-induced THz signal to the potentially slow demagnetization of Gd, which shift the emission spectra to lower frequencies, below our detection capabilities. These results highlight the limitations in using materials suffering from the so-called critical slowdown for the optimization of spintronic THz emitters.
|
Received: 02 May 2025
Revised: 14 June 2025
Accepted manuscript online: 27 June 2025
|
|
PACS:
|
67.30.hj
|
(Spin dynamics)
|
| |
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
| |
75.78.Jp
|
(Ultrafast magnetization dynamics and switching)
|
|
| Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2023YFF0719200), the National Natural Science Foundation of China (Grant No. 62105011), and the French National Research Agency ANR through the UFO project (Grant No. ANR-20-CE09-0013), the SLAM project (Grant No. ANR-23-CE30-0047), the MAT-PULSE-Lorraine Université d’Excellence project (Grant No. ANR-15-IDEX-04-LUE), and through the France 2030 Government Grants PEPR Electronic EMCOM (Grant No. ANR-22-PEEL-0009). |
Corresponding Authors:
Yong Xu, Jon Gorchon
E-mail: yongxu@buaa.edu.cn;jon.gorchon@univ-lorraine.fr
|
Cite this article:
Fan Zhang(张帆), Bin Hong(洪宾), Michel Hehn, Rongqing Zhao(赵戎庆), Gregory Malinowski, Yong Xu(许涌), Stéphane Mangin, Jon Gorchon, and Weisheng Zhao(赵巍胜) Terahertz time-domain spectroscopy to probe laser-excited spin currents in a Co/Gd system 2025 Chin. Phys. B 34 126701
|
[1] Beaurepaire E, Merle J C, Daunois A and Bigot J Y 1996 Phys. Rev. Lett. 76 4250 [2] Stanciu C D, Hansteen F, Kimel A V, Kirilyuk A, Tsukamoto A, Itoh A and Rasing T 2007 Phys. Rev. Lett. 99 047601 [3] Liu X, Xu Z, Gao R, Hu H, Chen Z, Wang Z, Du J, Zhou S and Lai T 2008 Appl. Phys. Lett. 92 232501 [4] Lalieu M L M, Peeters M J G, Haenen S R R, Lavrijsen R and Koopmans B 2017 Phys. Rev. B 96 220411 [5] Malinowski G, Dalla Longa F, Rietjens J H H, Paluskar P V, Huijink R, Swagten H J M and Koopmans B 2008 Nat. Phys. 4 855 [6] Battiato M, Carva K and Oppeneer P M 2010 Phys. Rev. Lett. 105 027203 [7] Choi G M, Min B C, Lee K J and Cahill D G 2014 Nat. Commun. 5 4334 [8] Shokeen V, Sanchez Piaia M, Bigot J Y, Muller T, Elliott P, Dewhurst J K, Sharma S and Gross E K U 2017 Phys. Rev. Lett. 119 107203 [9] Iihama S, Xu Y, Deb M, Malinowski G, Hehn M, Gorchon J, Fullerton E E and Mangin S 2018 Adv. Mater. 30 e1804004 [10] Hennecke M, Radu I, Abrudan R, Kachel T, Holldack K, Mitzner R, Tsukamoto A and Eisebitt S 2019 Phys. Rev. Lett. 122 157202 [11] Rouzegar R, Brandt L, Nádvorník L, Reiss D A, Chekhov A L, Gueckstock O, In C, Wolf M, Seifert T S, Brouwer P W, Woltersdorf G and Kampfrath T 2022 Phys. Rev. B 106 144427 [12] Remy Q, Hohlfeld J, Verges M, Le Guen Y, Gorchon J, Malinowski G, Mangin S and Hehn M 2023 Nat. Commun. 14 445 [13] van Hees Y L W, van de Meugheuvel P, Koopmans B and Lavrijsen R 2020 Nat. Commun. 11 3835 [14] Remy Q, Igarashi J, Iihama S, Malinowski G, Hehn M, Gorchon J, Hohlfeld J, Fukami S, Ohno H and Mangin S 2020 Adv. Sci. 7 2001996 [15] Huisman T J, Ciccarelli C, Tsukamoto A, Mikhaylovskiy R V, Rasing T and Kimel A V 2017 Appl. Phys. Lett. 110 072402 [16] Huisman T J, Mikhaylovskiy R V, Tsukamoto A, Rasing T and Kimel A V 2015 Phys. Rev. B 92 104419 [17] Lichtenberg T, van Hees Y L W, Beens M, Levels C J, Lavrijsen R, Duine R A and Koopmans B 2022 Phys. Rev. B 106 094436 [18] Miao B F, Huang S Y, Qu D and Chien C L 2013 Phys. Rev. Lett. 111 066602 [19] Chen X, Wang H, Liu H, Wang C, Wei G, Fang C, Wang H, Geng C, Liu S, Li P, Yu H, Zhao W, Miao J, Li Y, Wang L, Nie T, Zhao J and Wu X 2022 Adv. Mater. 34 e2106172 [20] Radu I, Vahaplar K, Stamm C, Kachel T, Pontius N, Durr H A, Ostler T A, Barker J, Evans R F, Chantrell R W, Tsukamoto A, Itoh A, Kirilyuk A, Rasing T and Kimel A V 2011 Nature 472 205 [21] Haskel D, Srajer G, Lang J C, Pollmann J, Nelson C S, Jiang J S and Bader S D 2001 Phys. Rev. Lett. 87 207201 [22] Choi G M and Min B C 2018 Phys. Rev. B 97 014410 [23] Bansal R, Chowdhury N and Muduli P K 2018 Appl. Phys. Lett. 112 262403 [24] Wu Y, Elyasi M, Qiu X, Chen M, Liu Y, Ke L and Yang H 2016 Adv. Mater. 29 1603031 [25] Cui B, Zhu Z, Wu C, Guo X, Nie Z, Wu H, Guo T, Chen P, Zheng D, Yu T, Xi L, Zeng Z, Liang S, Zhang G, Yu G and Wang K L 2022 Nanomaterials (Basel) 12 1887 [26] Reynolds N, Jadaun P, Heron J T, Jermain C L, Gibbons J, Collette R, Buhrman R A, Schlom D G and Ralph D C 2017 Phys. Rev. B 95 064412 [27] Gorchon J, Mangin S, Hehn M and Malinowski G 2022 Appl. Phys. Lett. 121 012402 [28] Seifert T S, Tran N M, Gueckstock O, Rouzegar S M, Nadvornik L, Jaiswal S, Jakob G, Temnov V V, Münzenberg M, Wolf M, Kläui M and Kampfrath T 2018 J. Phys. D: Appl. Phys. 51 364003 [29] Hennes M, Lambert G, Chardonnet V, Delaunay R, Chiuzbaian G S, Jal E and Vodungbo B 2022 Appl. Phys. Lett. 120 072408 [30] Koopmans B, Malinowski G, Dalla Longa F, Steiauf D, Fahnle M, Roth T, Cinchetti M and Aeschlimann M 2010 Nat. Mater. 9 259 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|