| ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Chaotic dynamics of Pr3+/Yb3+-doped all-fiber up-conversion visible fiber laser |
| Yisong Li(李义松)1,†, Yueling Hao(郝悦伶)1,†, Juanfen Wang(王娟芬)1, Xiaohui Chen(陈晓晖)1, Shengxiang Chen(陈胜祥)1, Chao Zhou(周超)1, Lingzhen Yang(杨玲珍)1,2,‡ |
1 College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China; 2 Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China |
|
|
|
|
Abstract We investigate theoretically and experimentally the chaotic dynamics of visible-wavelength all-fiber ring laser. The 100-m 630 HP fibers are used to ensure high non-linearity. A 4-m Pr$^{3+}$/Yb$^{3+}$-co-doped ZBLAN fiber provides the gain. The chaotic laser was pumped by the laser diodes with the maximum power of 150 mW at the wavelength of 850 nm. The peak fluorescence spectrum of Pr$^{3+}$/Yb$^{3+}$-co-doped ZBLAN fiber at the wavelength of 635 nm shows that the visible-wavelength fiber laser can be achieved by synergistic energy transfer between Pr$^{3+}$ and Yb$^{3+}$ ions. The chaotic fiber laser is generated by adjusting the pump power, polarization controller and the auto-correlation, permutation entropy, skewness, and kurtosis were used to analyze the characteristics of chaotic laser. The noise-like time series and delta-like auto-correlation curve indicate the chaotic output. The complexity and randomness of time series are analyzed by the permutation entropy, skewness, and kurtosis. The result shows that chaotic dynamics is stable when the pump power exceeds a certain value. The visible chaotic all-fiber laser has high stability and can be applied for real-time monitoring and sensing. We believe that this approach may also be feasible for other materials for emission in the visible range.
|
Received: 19 April 2025
Revised: 07 June 2025
Accepted manuscript online: 16 June 2025
|
|
PACS:
|
42.65.Sf
|
(Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)
|
| |
42.60.-v
|
(Laser optical systems: design and operation)
|
| |
42.55.Wd
|
(Fiber lasers)
|
| |
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61975141, 61575137, and 61675144). |
Corresponding Authors:
Lingzhen Yang
E-mail: office-science@tyut.edu.cn
|
Cite this article:
Yisong Li(李义松), Yueling Hao(郝悦伶), Juanfen Wang(王娟芬), Xiaohui Chen(陈晓晖), Shengxiang Chen(陈胜祥), Chao Zhou(周超), Lingzhen Yang(杨玲珍) Chaotic dynamics of Pr3+/Yb3+-doped all-fiber up-conversion visible fiber laser 2026 Chin. Phys. B 35 014208
|
[1] Sakuraba R, Iwakawa K, Kanno K and Uchida A 2015 Opt. Express 23 1470 [2] Bouchez G, Malica T, Wolfersberger D and Sciamanna M 2021 Phys. Rev. E 103 042207 [3] Li J, Yang L Z, Ding W J, Zhan M X, Fan L L, Wang J F, Shang H F and Ti G 2021 Appl. Opt. 60 4004 [4] Zhang M and Wang Y 2021 J. Lightwave Technol. 39 3711 [5] Wang L, Mao X, Wang A, Wang Y, Gao Z, Li S and Yan L 2020 Opt. Lett. 45 4762 [6] Annovazzi-Lodi V, Benedetti M, Merlo S, Perez T, Colet P and Mirasso C R 2007 IEEE Photon. Technol. Lett. 19 76 [7] Li X Z, Li S S and Chan S C 2017 IEEE Photon. J. 9 1505411 [8] Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, et al. 2008 Nat. Photon. 2 728 [9] Wang D, Lei Y, Shi P and Li Z 2023 Chin. Phys. B 32 090505 [10] Tian J, Yang L, Qin C, Wu T, Wang J, Zhang Z, Li K and Copner N J 2020 IEEE Sens. J. 20 4215 [11] Li M, Zhang X, Zhang J, Zhang M, Qiao L and Wang T 2019 IEEE Photon. Technol. Lett. 31 1389 [12] Chen R, Shu H, Shen B, Chang L, Xie W, Liao W, Tao Z, Bowers J E and Wang X 2023 Nat. Photon. 17 306 [13] Feng L, Gao H, Zhang J, Yu M, Chen X, Hu W and Yi L 2021 Opt. Express 29 719 [14] Tseng C H, Funabashi R, Kanno K, Uchida A, Wei C C and Hwang S K 2021 Opt. Lett. 46 3384 [15] Liu B, Jiang Y and Ji H 2022 Photonics 9 450 [16] Guo Y, Wang D, Wang L, Jia Z, Zhao T, Chang P, Wang Y and Wang A 2023 Photonics 10 370 [17] Xue C P, Wang X, Zheng L K, Zhang H Y, Hong Y H and Zhang Z X 2025 Chin. Phys. B 34 030504 [18] Li J, Yang L, Hao Y, Feng H, Ding W, Wang J, Shang H and Ti G 2024 Opt. Express 32 12496 [19] Wang C, Li J, Zhou X, Cheng Z, Qiao L, Xue X and Zhang M 2023 Light Sci. Appl. 12 213 [20] Zhu J Y, He Z M, Huang C, Zeng J, Lin H C, Chen F C, Yu C Q, Li Y, Zhang Y T, Chen H T and Pu J X 2024 Chin. Phys. B 33 080701 [21] Zou J, Kang Z, Wang R, Wang H, Liu J, Dong C, Jiang X, Xu B, Cai Z, Qin G, Zhang H and Luo Z 2019 Nanoscale 11 15991 [22] Kowalska M, Klocek G, Piramidowicz R and Malinowski M 2004 J. Alloys Compd. 380 156 [23] Demaimay J, Kifle E, Loiko P, Pau F, Recoque G, Georges T, Rault T, Bodin L, Joulain F, Camy P and Braud A 2024 Opt. Lett. 49 4174 [24] Wang H, Zou J, Dong C, Du T, Xu B, Xu H, Cai Z and Luo Z 2019 Opt. Lett. 44 4423 [25] Zhang C, Hong J, Zhou L, Zou J and Luo Z 2023 Opt. Laser Technol. 160 109050 [26] Xie P, Zhao X M, Jain R and Gosnell T R 1998 Technical Digest. Summaries of Papers Presented at the Conference on Lasers and Electro- Optics, July 1998 San Francisco, USA, p. 323 [27] Zellmer H, Riedel P and Tünnermann A 1999 Appl. Phys. B 69 417 [28] Zou J, Dong C, Wang H, Du T and Luo Z 2020 Light Sci. Appl. 9 61 [29] Ji S, Wang Z, Huang S, Shen C, Lin J, Xiao B, Feng Q, Xu H and Cai Z 2023 Opt. Laser Technol. 158 108900 [30] Liu S, Lin J, Ji S, Song Y, Feng Q, Xiao B, Wang Z, Xu H and Cai Z 2023 Opt. Laser Technol. 157 108720 [31] Wu D, Peng J, Cai Z, Weng J, Luo Z, Chen N and Xu H 2015 Opt. Express 23 24071 [32] Wu D, Quan C, Guo Z, Cai Z and Xu H 2018 J. Opt. 20 085501 [33] Luo S, Tang X, Geng X, Gu H, Li L and Cai Z 2022 Opt. Lett. 47 5881 [34] Li T, Wang Z, Zou J, Hong J, Ruan Q, Wang H, Dong Z and Luo Z 2023 Photon. Res. 11 413 [35] Lord M P, Olivier M, Bernier M and Vallée R 2023 Opt. Lett. 48 3709 [36] Luo L, Tee T and Chu P 1998 J. Opt. Soc. Am. B 15 972 [37] Abarbanel H D, Kennel M B, Buhl M and Lewis C T 1999 Phys. Rev. A 60 2360 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|