|
|
|
New spectroscopic data on even-parity autoionization states for two-color two-step photoionization of nickel atom |
| Jun-Yao Zhang(张钧尧)1,2,3, Jing-Yi Xiong(熊静逸)2, Hong-Ru Zhou(周鸿儒)2, Cai-Hua Zhu(朱才华)2, Huai-Miao Sun(孙槐苗)1,2, Li-De Wang(王立德)1,2,3, Kai-Chen Ma(马恺宸)2, Jun-Jie Chai(柴俊杰)1,2, and Yun-Fei Li(李云飞)1,2,† |
1 National Key Laboratory of Particle Transport and Separation Technology, Tianjin 300180, China; 2 Research Institute of Physical and Chemical Engineering of Nuclear Industry, Tianjin 300180, China; 3 Tianjin Key Laboratory of Stable Isotope Materials Technology, Tianjin 300180, China |
|
|
|
|
Abstract The development of collinear resonance ionization spectroscopy for studying the nuclear structure of nickel isotopes far from the stability line relies on high-efficiency two-color two-step photoionization pathways. We systematically investigated the even-parity autoionization spectrum of atomic nickel through resonance ionization mass spectrometry (RIMS). Fifteen intense single-color photoionization lines and corresponding transitions in the 300-325 nm range were identified and excluded as potential interference peaks for subsequent two-color studies. Fifty-one even-parity autoionization states in the 64000-66800 cm$^{-1}$ range were identified for the first time by scanning from five intermediate excited states of the 3d$^{8}$(${}^{3}$F)4s4p(${}^{3}$P$^{\rm o}$) configuration. Forty-eight of these states were assigned unique total angular momentum quantum numbers ($J$) based on electric dipole transition selection rules. The autoionization state at 64437.77 cm$^{-1}$ was identified as an optimal final state for enhancing photoionization efficiency in two-color two-step pathways. This study provides comprehensive datasets of even-parity autoionization states of nickel, supporting both the advancement of collinear resonance ionization spectroscopy for exotic nickel isotopes and theoretical modeling of autoionization states. The datasets are openly available at https://doi.org/10.57760/sciencedb.j00113.00280.
|
Received: 28 May 2025
Revised: 24 July 2025
Accepted manuscript online: 28 July 2025
|
|
PACS:
|
32.80.Zb
|
(Autoionization)
|
| |
82.80.Ms
|
(Mass spectrometry (including SIMS, multiphoton ionization and resonance ionization mass spectrometry, MALDI))
|
| |
42.55.Mv
|
(Dye lasers)
|
|
| Fund: This work was supported by the China National Nuclear Corporation Basic Research Project (Grant No. CNNC-JCYJ-202327). |
Corresponding Authors:
Yun-Fei Li
E-mail: Ipce_liyf@mails.cneic.com.cn
|
Cite this article:
Jun-Yao Zhang(张钧尧), Jing-Yi Xiong(熊静逸), Hong-Ru Zhou(周鸿儒), Cai-Hua Zhu(朱才华), Huai-Miao Sun(孙槐苗), Li-De Wang(王立德), Kai-Chen Ma(马恺宸), Jun-Jie Chai(柴俊杰), and Yun-Fei Li(李云飞) New spectroscopic data on even-parity autoionization states for two-color two-step photoionization of nickel atom 2026 Chin. Phys. B 35 013201
|
[1] Ye Y, Yang X, Sakurai H and Hu B 2024 Nat. Rev. Phys. 7 21 [2] Yang X F, Wang S J, Wilkins S G and Ruiz R F G 2023 Prog. Part. Nucl. Phys. 129 104005 [3] Sorlin O and Porquet M G 2008 Prog. Part. Nucl. Phys. 61 602 [4] Sommer F, Konig K, Rossi D M, et al. 2022 Phys. Rev. Lett. 129 132501 [5] Pineda S V, Konig K, Rossi D M, Brown B A, Incorvati A, Lantis J, Minamisono K, Nortersh auser W, Piekarewicz J, Powel R and Sommer F 2021 Phys. Rev. Lett. 127 182503 [6] Konig K, Sommer F, Lantis J, Minamisono K, N ortersh auser W, Pineda S and Powel R 2021 Phys. Rev. C 103 054305 [7] Kaufmann S, Simonis J, Bacca S, et al. 2020 Phys. Rev. Lett. 124 132502 [8] Taniuchi R, Santamaria C, Doornenbal P, et al. 2019 Nature 569 53 [9] Sun X H, Wang H, Yoneda K, et al. 2024 Phys. Lett. B 858 139081 [10] Malbrunot-Ettenauer S, Kaufmann S, Bacca S, et al. 2022 Phys. Rev. Lett. 128 022502 [11] Hosmer P T, Schatz H, Aprahamian A, et al. 2005 Phys. Rev. Lett. 94 112501 [12] Koszorus A and Cheal B 2024 Eur. Phys. J. Spec. Top. 233 1133 [13] Koszorus A, De Groote R P, Cheal B, Campbell P and Moore I D 2024 Eur. Phys. J. A 60 20 [14] Campbell P, Moore I D and Pearson M R 2016 Prog. Part. Nucl. Phys. 86 127 [15] De Groote R P, Budincevic I, Billowes J, et al. 2015 Phys. Rev. Lett. 115 132501 [16] Farooq-Smith G J, Vernon A R, Billowes J, Binnersley C L, Bissell M L, Cocolios T E, Day Goodacre T, De Groote R P, Flanagan K T, Franchoo S, Garcia Ruiz R F, Gins W, Lynch K M, Marsh B A, Neyens G, Rothe S, Stroke H H, Wilkins S G and Yang X F 2017 Phys. Rev. C 96 044324 [17] Lynch K M, Wilkins S G, Billowes J, et al. 2018 Phys. Rev. C 97 024309 [18] Koszorus A, Yang X F, Billowes J, Binnersley C L, Bissell M L, Co- colios T E, Farooq-Smith G J, De Groote R P, Flanagan K T, Franchoo S, Garcia Ruiz R F, Geldhof S, Gins W, Kanellakopoulos A, Lynch K M, Neyens G, Stroke H H, Vernon A R, Wendt K D A and Wilkins S G 2019 Phys. Rev. C 100 034304 [19] De Groote R P, Billowes J, Binnersley C L, et al. 2020 Nat. Phys. 16 620 [20] Garcia Ruiz R F, Berger R, Billowes J, et al. 2020 Nature 581 396 [21] Gustafsson F P, Ricketts C M, Reitsma M L, Garcia Ruiz R F, Bai S W, Berengut J C, Billowes J, Binnersley C L, Borschevsky A, Cocolios T E, Cooper B S, De Groote R P, Flanagan K T, Koszorus A, Neyens G, Perrett H A, Vernon A R, Wang Q, Wilkins S G and Yang X F 2020 Phys. Rev. A 102 052812 [22] Vernon A R, Ricketts C M, Billowes J, Cocolios T E, Cooper B S, Flanagan K T, Garcia Ruiz R F, Gustafsson F P, Neyens G, Perrett H A, Sahoo B K, Wang Q, Waso F J and Yang X F 2020 Sci. Rep. 10 12306 [23] Koszorus A, Yang X F, Jiang W G, et al. 2021 Nat. Phys. 17 439 [24] Bai S W, Koszorus A, Hu B S, et al. 2022 Phys. Lett. B 829 137064 [25] Vernon A R, Garcia Ruiz R F, Miyagi T, Binnersley C L, et al. 2022 Nature 607 260 [26] Johnson J D, Heines M, Bruchertseifer F, Chevallay E, Cocolios T E, Dockx K, Duchemin C, Heinitz S, Heinke R, Hurier S, Lambert L, Leenders B, Skliarova H, Stora T and Wojtaczka W 2023 Sci. Rep. 13 1347 [27] Savina M R, Isselhardt B H, Shulaker D Z, Robel M, Conant A J and Ade B J 2023 Sci. Rep. 13 5193 [28] Kaja M, Studer D, Berg F, Berndt S, Dullmann C E, Kneip N, Reich T, Urquiza-Gonzalez M and Wendt K 2024 Eur. Phys. J. D 78 50 [29] Miyabe M, Iwata Y, Tomita H, Morita M and Sakamoto T 2024 Spectroc. Acta Pt. B-Atom. Spectr. 221 107036 [30] Lantis J, Claessens A, Munzberg D, et al. 2024 Phys. Rev. Res. 6 023318 [31] Raiwa M, Savina M R, Roberts A G, Shulaker D Z and Isselhardt B H 2024 J. Am. Soc. Mass Spectrom. 35 3233 [32] Jokinen A, Evensen A H, Kugler E, Lettry J, Ravn H, Van Duppen P, Erdmann N, Jading Y, Kohler S, Kratz K L, Trautman N, W ohr A, Fe- doseyev V N, Mishin V I and Tikhonov V 1997 Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 126 95 [33] Kessler T, Bruck K, Baktash C, Beene J R, Geppert C, Havener C C, Krause H F, Liu Y, Schultz D R, Stracener D W, Vane C R and Wendt K 2007 J. Phys. B-At. Mol. Opt. Phys. 40 4413 [34] Shi X, Huang H, Jacobson B, Chang Y C, Yin Q Z and Ng C Y 2012 ApJ 747 20 [35] Tsvetkov G O, D’yachkov A B, Gorkunov A A, Labozin A V, Mironov S M, Firsov V A and Panchenko V Y 2017 Quantum Electron. 47 48 [36] Zhang J Y, Xiong J Y, Zhou H R, Zhu C H, Sun H M, Wang L D, Chai J J and Li Y F 2025 Spectroc. Acta Pt. B-Atom. Spectr. 231 107249 [37] Lievens P, Vandeweert E, Thoen P and Silverans R E 1996 Phys. Rev. A 54 2253 [38] Kim D S and Tayal S S 2000 J. Phys. B: At. Mol. Opt. Phys. 33 3235 [39] Avery J and Avery J 2005 Adv. Quantum Chem. 49 103 [40] Cardona J C and Sanz-Vicario J L 2008 J. Phys. B: At. Mol. Opt. Phys. 41 055003 [41] Argenti L and Moccia R 2016 Phys. Rev. A 93 042503 [42] Baig M A 2022 Atoms 10 39 [43] Vandeweert E, Lievens P, Philipsen V and Silverans R E 1999 Spectroc. Acta Pt. B-Atom. Spectr. 54 1219 [44] Marsh B A 2014 Rev. Sci. Instrum. 85 049901 [45] Rath A D, Biswal D and Kundu S 2021 J. Quant. Spectrosc. Radiat. Transf. 270 107696 [46] Zhang J Y, Xiong J Y, Wei S Q, Li Y F and Lu X Y 2023 Acta Phys. Sin. 72 193203 (in Chinese) [47] Iwata Y, Miyabe M, Akaoka K, Wakaida I and Hasegawa S 2024 J. Opt. Soc. Am. B 41 119 [48] Zhang J Y, Lu X Y, Li Y F and Chai J J 2024 Eur. Phys. J. D 78 95 [49] Meher L P, Kumar V, Biswal D and Rath A D 2025 J. Quant. Spectrosc. Radiat. Transf. 331 109273 [50] Kramida A, Ralchenko Yu, Reader J, NIST ASD Team 2024 NIST Atomic Spectra Database (ver. 5.12)[Online]. 2025 May 24, Gaithersburg, MD: National Institute of Standards and Technology. DOI:10.18434/T4W30F [51] Bergeson S D and Lawler J E 1993 J. Opt. Soc. Am. B 10 794 [52] Shang X, Wang Q, Zhang F, Wang C and Dai Z 2015 J. Quant. Spectrosc. Radiat. Transf. 163 34 [53] Vernon A R, Billowes J, Binnersley C L, Bissell M L, Cocolios T E, Farooq-Smith G J, Flanagan K T, Garcia Ruiza R F, Gins W, de Groot R P, Koszorus A, Lynch K M, Neyens G, Ricketts C M, Wendt K D A, Wilkins S G and Yang X F 2019 Spectroc. Acta Pt. B-Atom. Spectr. 153 61 [54] Mushtaq S 2022 J. Anal. At. Spectrom. 37 985 [55] Fano U 1961 Phys. Rev. 124 1866 [56] Mandal P K, Sahoo A C, Das R C, Shah M L and Dev V 2017 Appl. Phys. B 123 192 [57] Sahoo A C, Mandal P K, Mukherjee J, Dev V and Shah M L 2021 J. Quant. Spectrosc. Radiat. Transf. 276 107944 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|