Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 013201    DOI: 10.1088/1674-1056/adf4ae
DATA PAPER Prev   Next  

New spectroscopic data on even-parity autoionization states for two-color two-step photoionization of nickel atom

Jun-Yao Zhang(张钧尧)1,2,3, Jing-Yi Xiong(熊静逸)2, Hong-Ru Zhou(周鸿儒)2, Cai-Hua Zhu(朱才华)2, Huai-Miao Sun(孙槐苗)1,2, Li-De Wang(王立德)1,2,3, Kai-Chen Ma(马恺宸)2, Jun-Jie Chai(柴俊杰)1,2, and Yun-Fei Li(李云飞)1,2,†
1 National Key Laboratory of Particle Transport and Separation Technology, Tianjin 300180, China;
2 Research Institute of Physical and Chemical Engineering of Nuclear Industry, Tianjin 300180, China;
3 Tianjin Key Laboratory of Stable Isotope Materials Technology, Tianjin 300180, China
Abstract  The development of collinear resonance ionization spectroscopy for studying the nuclear structure of nickel isotopes far from the stability line relies on high-efficiency two-color two-step photoionization pathways. We systematically investigated the even-parity autoionization spectrum of atomic nickel through resonance ionization mass spectrometry (RIMS). Fifteen intense single-color photoionization lines and corresponding transitions in the 300-325 nm range were identified and excluded as potential interference peaks for subsequent two-color studies. Fifty-one even-parity autoionization states in the 64000-66800 cm$^{-1}$ range were identified for the first time by scanning from five intermediate excited states of the 3d$^{8}$(${}^{3}$F)4s4p(${}^{3}$P$^{\rm o}$) configuration. Forty-eight of these states were assigned unique total angular momentum quantum numbers ($J$) based on electric dipole transition selection rules. The autoionization state at 64437.77 cm$^{-1}$ was identified as an optimal final state for enhancing photoionization efficiency in two-color two-step pathways. This study provides comprehensive datasets of even-parity autoionization states of nickel, supporting both the advancement of collinear resonance ionization spectroscopy for exotic nickel isotopes and theoretical modeling of autoionization states. The datasets are openly available at https://doi.org/10.57760/sciencedb.j00113.00280.
Keywords:  nickel      autoionization states      even-parity      resonance ionization mass spectrometry (RIMS)  
Received:  28 May 2025      Revised:  24 July 2025      Accepted manuscript online:  28 July 2025
PACS:  32.80.Zb (Autoionization)  
  82.80.Ms (Mass spectrometry (including SIMS, multiphoton ionization and resonance ionization mass spectrometry, MALDI))  
  42.55.Mv (Dye lasers)  
Fund: This work was supported by the China National Nuclear Corporation Basic Research Project (Grant No. CNNC-JCYJ-202327).
Corresponding Authors:  Yun-Fei Li     E-mail:  Ipce_liyf@mails.cneic.com.cn

Cite this article: 

Jun-Yao Zhang(张钧尧), Jing-Yi Xiong(熊静逸), Hong-Ru Zhou(周鸿儒), Cai-Hua Zhu(朱才华), Huai-Miao Sun(孙槐苗), Li-De Wang(王立德), Kai-Chen Ma(马恺宸), Jun-Jie Chai(柴俊杰), and Yun-Fei Li(李云飞) New spectroscopic data on even-parity autoionization states for two-color two-step photoionization of nickel atom 2026 Chin. Phys. B 35 013201

[1] Ye Y, Yang X, Sakurai H and Hu B 2024 Nat. Rev. Phys. 7 21
[2] Yang X F, Wang S J, Wilkins S G and Ruiz R F G 2023 Prog. Part. Nucl. Phys. 129 104005
[3] Sorlin O and Porquet M G 2008 Prog. Part. Nucl. Phys. 61 602
[4] Sommer F, Konig K, Rossi D M, et al. 2022 Phys. Rev. Lett. 129 132501
[5] Pineda S V, Konig K, Rossi D M, Brown B A, Incorvati A, Lantis J, Minamisono K, Nortersh auser W, Piekarewicz J, Powel R and Sommer F 2021 Phys. Rev. Lett. 127 182503
[6] Konig K, Sommer F, Lantis J, Minamisono K, N ortersh auser W, Pineda S and Powel R 2021 Phys. Rev. C 103 054305
[7] Kaufmann S, Simonis J, Bacca S, et al. 2020 Phys. Rev. Lett. 124 132502
[8] Taniuchi R, Santamaria C, Doornenbal P, et al. 2019 Nature 569 53
[9] Sun X H, Wang H, Yoneda K, et al. 2024 Phys. Lett. B 858 139081
[10] Malbrunot-Ettenauer S, Kaufmann S, Bacca S, et al. 2022 Phys. Rev. Lett. 128 022502
[11] Hosmer P T, Schatz H, Aprahamian A, et al. 2005 Phys. Rev. Lett. 94 112501
[12] Koszorus A and Cheal B 2024 Eur. Phys. J. Spec. Top. 233 1133
[13] Koszorus A, De Groote R P, Cheal B, Campbell P and Moore I D 2024 Eur. Phys. J. A 60 20
[14] Campbell P, Moore I D and Pearson M R 2016 Prog. Part. Nucl. Phys. 86 127
[15] De Groote R P, Budincevic I, Billowes J, et al. 2015 Phys. Rev. Lett. 115 132501
[16] Farooq-Smith G J, Vernon A R, Billowes J, Binnersley C L, Bissell M L, Cocolios T E, Day Goodacre T, De Groote R P, Flanagan K T, Franchoo S, Garcia Ruiz R F, Gins W, Lynch K M, Marsh B A, Neyens G, Rothe S, Stroke H H, Wilkins S G and Yang X F 2017 Phys. Rev. C 96 044324
[17] Lynch K M, Wilkins S G, Billowes J, et al. 2018 Phys. Rev. C 97 024309
[18] Koszorus A, Yang X F, Billowes J, Binnersley C L, Bissell M L, Co- colios T E, Farooq-Smith G J, De Groote R P, Flanagan K T, Franchoo S, Garcia Ruiz R F, Geldhof S, Gins W, Kanellakopoulos A, Lynch K M, Neyens G, Stroke H H, Vernon A R, Wendt K D A and Wilkins S G 2019 Phys. Rev. C 100 034304
[19] De Groote R P, Billowes J, Binnersley C L, et al. 2020 Nat. Phys. 16 620
[20] Garcia Ruiz R F, Berger R, Billowes J, et al. 2020 Nature 581 396
[21] Gustafsson F P, Ricketts C M, Reitsma M L, Garcia Ruiz R F, Bai S W, Berengut J C, Billowes J, Binnersley C L, Borschevsky A, Cocolios T E, Cooper B S, De Groote R P, Flanagan K T, Koszorus A, Neyens G, Perrett H A, Vernon A R, Wang Q, Wilkins S G and Yang X F 2020 Phys. Rev. A 102 052812
[22] Vernon A R, Ricketts C M, Billowes J, Cocolios T E, Cooper B S, Flanagan K T, Garcia Ruiz R F, Gustafsson F P, Neyens G, Perrett H A, Sahoo B K, Wang Q, Waso F J and Yang X F 2020 Sci. Rep. 10 12306
[23] Koszorus A, Yang X F, Jiang W G, et al. 2021 Nat. Phys. 17 439
[24] Bai S W, Koszorus A, Hu B S, et al. 2022 Phys. Lett. B 829 137064
[25] Vernon A R, Garcia Ruiz R F, Miyagi T, Binnersley C L, et al. 2022 Nature 607 260
[26] Johnson J D, Heines M, Bruchertseifer F, Chevallay E, Cocolios T E, Dockx K, Duchemin C, Heinitz S, Heinke R, Hurier S, Lambert L, Leenders B, Skliarova H, Stora T and Wojtaczka W 2023 Sci. Rep. 13 1347
[27] Savina M R, Isselhardt B H, Shulaker D Z, Robel M, Conant A J and Ade B J 2023 Sci. Rep. 13 5193
[28] Kaja M, Studer D, Berg F, Berndt S, Dullmann C E, Kneip N, Reich T, Urquiza-Gonzalez M and Wendt K 2024 Eur. Phys. J. D 78 50
[29] Miyabe M, Iwata Y, Tomita H, Morita M and Sakamoto T 2024 Spectroc. Acta Pt. B-Atom. Spectr. 221 107036
[30] Lantis J, Claessens A, Munzberg D, et al. 2024 Phys. Rev. Res. 6 023318
[31] Raiwa M, Savina M R, Roberts A G, Shulaker D Z and Isselhardt B H 2024 J. Am. Soc. Mass Spectrom. 35 3233
[32] Jokinen A, Evensen A H, Kugler E, Lettry J, Ravn H, Van Duppen P, Erdmann N, Jading Y, Kohler S, Kratz K L, Trautman N, W ohr A, Fe- doseyev V N, Mishin V I and Tikhonov V 1997 Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 126 95
[33] Kessler T, Bruck K, Baktash C, Beene J R, Geppert C, Havener C C, Krause H F, Liu Y, Schultz D R, Stracener D W, Vane C R and Wendt K 2007 J. Phys. B-At. Mol. Opt. Phys. 40 4413
[34] Shi X, Huang H, Jacobson B, Chang Y C, Yin Q Z and Ng C Y 2012 ApJ 747 20
[35] Tsvetkov G O, D’yachkov A B, Gorkunov A A, Labozin A V, Mironov S M, Firsov V A and Panchenko V Y 2017 Quantum Electron. 47 48
[36] Zhang J Y, Xiong J Y, Zhou H R, Zhu C H, Sun H M, Wang L D, Chai J J and Li Y F 2025 Spectroc. Acta Pt. B-Atom. Spectr. 231 107249
[37] Lievens P, Vandeweert E, Thoen P and Silverans R E 1996 Phys. Rev. A 54 2253
[38] Kim D S and Tayal S S 2000 J. Phys. B: At. Mol. Opt. Phys. 33 3235
[39] Avery J and Avery J 2005 Adv. Quantum Chem. 49 103
[40] Cardona J C and Sanz-Vicario J L 2008 J. Phys. B: At. Mol. Opt. Phys. 41 055003
[41] Argenti L and Moccia R 2016 Phys. Rev. A 93 042503
[42] Baig M A 2022 Atoms 10 39
[43] Vandeweert E, Lievens P, Philipsen V and Silverans R E 1999 Spectroc. Acta Pt. B-Atom. Spectr. 54 1219
[44] Marsh B A 2014 Rev. Sci. Instrum. 85 049901
[45] Rath A D, Biswal D and Kundu S 2021 J. Quant. Spectrosc. Radiat. Transf. 270 107696
[46] Zhang J Y, Xiong J Y, Wei S Q, Li Y F and Lu X Y 2023 Acta Phys. Sin. 72 193203 (in Chinese)
[47] Iwata Y, Miyabe M, Akaoka K, Wakaida I and Hasegawa S 2024 J. Opt. Soc. Am. B 41 119
[48] Zhang J Y, Lu X Y, Li Y F and Chai J J 2024 Eur. Phys. J. D 78 95
[49] Meher L P, Kumar V, Biswal D and Rath A D 2025 J. Quant. Spectrosc. Radiat. Transf. 331 109273
[50] Kramida A, Ralchenko Yu, Reader J, NIST ASD Team 2024 NIST Atomic Spectra Database (ver. 5.12)[Online]. 2025 May 24, Gaithersburg, MD: National Institute of Standards and Technology. DOI:10.18434/T4W30F
[51] Bergeson S D and Lawler J E 1993 J. Opt. Soc. Am. B 10 794
[52] Shang X, Wang Q, Zhang F, Wang C and Dai Z 2015 J. Quant. Spectrosc. Radiat. Transf. 163 34
[53] Vernon A R, Billowes J, Binnersley C L, Bissell M L, Cocolios T E, Farooq-Smith G J, Flanagan K T, Garcia Ruiza R F, Gins W, de Groot R P, Koszorus A, Lynch K M, Neyens G, Ricketts C M, Wendt K D A, Wilkins S G and Yang X F 2019 Spectroc. Acta Pt. B-Atom. Spectr. 153 61
[54] Mushtaq S 2022 J. Anal. At. Spectrom. 37 985
[55] Fano U 1961 Phys. Rev. 124 1866
[56] Mandal P K, Sahoo A C, Das R C, Shah M L and Dev V 2017 Appl. Phys. B 123 192
[57] Sahoo A C, Mandal P K, Mukherjee J, Dev V and Shah M L 2021 J. Quant. Spectrosc. Radiat. Transf. 276 107944
[1] Theoretical investigation of potential superconductivity in Sr-doped La3Ni2O7 at ambient pressure
Lei Shi(石磊), Ying Luo(罗颖), Wei Wu(吴为), and Yunwei Zhang(张云蔚). Chin. Phys. B, 2025, 34(7): 077403.
[2] Elastic-plastic behavior of nickel-based single crystal superalloys with γ-γ' phases based on molecular dynamics simulations
Jing-Zhao Cao(曹景昭), Yun-Guang Zhang(张云光), Zhong-Kui Zhang(张中奎), Jiang-Peng Fan(范江鹏), Qi Dong(董琪), and Ying-Ying Fang(方盈盈). Chin. Phys. B, 2025, 34(4): 046204.
[3] Electronic structure and disorder effect of La3Ni2O7 superconductor
Yuxin Wang(王郁欣), Yi Zhang(张燚), and Kun Jiang(蒋坤). Chin. Phys. B, 2025, 34(4): 047105.
[4] Probing nickelate superconductors at atomic scale: A STEM review
Yihan Lei(雷一涵), Yanghe Wang(王扬河), Jiahao Song(宋家豪), Jinxin Ge(葛锦昕), Dirui Wu(伍迪睿), Yingli Zhang(张英利), and Changjian Li(黎长建). Chin. Phys. B, 2024, 33(9): 096801.
[5] Superconducting state in Ba(1-x)SrxNi2As2 near the quantum critical point
Chengfeng Yu(余承峰), Zongyuan Zhang(张宗源), Linxing Song(宋林兴), Yanwei Wu(吴彦玮), Xiaoqiu Yuan(袁小秋), Jie Hou(侯杰), Yubing Tu(涂玉兵), Xingyuan Hou(侯兴元), Shiliang Li(李世亮), and Lei Shan(单磊). Chin. Phys. B, 2024, 33(6): 066802.
[6] Accurate estimation of Li/Ni mixing degree of lithium nickel oxide cathode materials
Penghao Chen(陈鹏浩), Lei Xu(徐磊), Xiqian Yu(禹习谦), and Hong Li(李泓). Chin. Phys. B, 2024, 33(5): 058202.
[7] Electronic structure of cuprate-nickelate infinite-layer heterostructure
Dachuan Chen(陈大川), Paul Worm, Liang Si(司良), Chunxiao Zhang(张春小), Fenglin Deng(邓凤麟), Peiheng Jiang(蒋沛恒), and Zhicheng Zhong(钟志诚). Chin. Phys. B, 2023, 32(8): 087105.
[8] Stress effect on lattice thermal conductivity of anode material NiNb2O6 for lithium-ion batteries
Ao Chen(陈奥), Hua Tong(童话), Cheng-Wei Wu(吴成伟), Guofeng Xie(谢国锋), Zhong-Xiang Xie(谢忠祥), Chang-Qing Xiang(向长青), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2023, 32(5): 058201.
[9] β-Ga2O3 junction barrier Schottky diode with NiO p-well floating field rings
Qiming He(何启鸣), Weibing Hao(郝伟兵), Qiuyan Li(李秋艳), Zhao Han(韩照), Song He(贺松),Qi Liu(刘琦), Xuanze Zhou(周选择), Guangwei Xu(徐光伟), and Shibing Long(龙世兵). Chin. Phys. B, 2023, 32(12): 128507.
[10] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[11] Synthesis and properties of La1-xSrxNiO3 and La1-xSrxNiO2
Mengwu Huo(霍梦五), Zengjia Liu(刘增家), Hualei Sun(孙华蕾), Lisi Li(李历斯), Hui Lui(刘晖), Chaoxin Huang(黄潮欣), Feixiang Liang(梁飞翔), Bing Shen(沈冰), and Meng Wang(王猛). Chin. Phys. B, 2022, 31(10): 107401.
[12] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[13] Evolution of helium bubbles in nickel-based alloy by post-implantation annealing
Rui Zhu(朱睿), Qin Zhou(周钦), Li Shi(史力), Li-Bin Sun(孙立斌), Xin-Xin Wu(吴莘馨), Sha-Sha Lv(吕沙沙), and Zheng-Cao Li(李正操). Chin. Phys. B, 2021, 30(8): 086102.
[14] Theory of unconventional superconductivity in nickelate-based materials
Ming Zhang(张铭), Yu Zhang(张渝), Huaiming Guo(郭怀明), and Fan Yang(杨帆). Chin. Phys. B, 2021, 30(10): 108204.
[15] Relevance of 3d multiplet structure in nickelate and cuprate superconductors
Mi Jiang(蒋密). Chin. Phys. B, 2021, 30(10): 107103.
No Suggested Reading articles found!