Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(12): 124205    DOI: 10.1088/1674-1056/ade664
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev  

Stability, bifurcation, chaotic pattern, phase portrait and exact solutions of a class of semi-linear Schrödinger equations with Kudryashov’s power law self-phase modulation and multiplicative white noise based on Stratonvich’s calculus

Cheng-Qiang Wang(王成强)1,†, Xiang-Qing Zhao(赵向青)1, Yu-Lin Zhang(张玉林)2, and Zhi-Wei Lv(吕志伟)1
1 School of Mathematics and Physics, Suqian University, Suqian 223800, China;
2 School of Mathematics, Chengdu Normal University, Chengdu 611130, China
Abstract  We devote ourselves to finding exact solutions (including perturbed soliton solutions) to a class of semi-linear Schrödinger equations incorporating Kudryashov's self-phase modulation subject to stochastic perturbations described by multiplicative white noise based on Stratonvich's calculus. By borrowing ideas of the sub-equation method and utilizing a series of changes of variables, we transform the problem of identifying exact solutions into the task of analyzing the dynamical behaviors of an auxiliary planar Hamiltonian dynamical system. We determine the equilibrium points of the introduced auxiliary Hamiltonian system and analyze their Lyapunov stability. Additionally, we conduct a brief bifurcation analysis and a preliminary chaos analysis of the auxiliary Hamiltonian system, assessing their impact on the Lyapunov stability. Based on the insights gained from investigating the dynamics of the introduced auxiliary Hamiltonian system, we discover `all' of the exact solutions to the stochastic semi-linear Schrödinger equations under consideration. We obtain explicit formulas for exact solutions by examining the phase portrait of the introduced auxiliary Hamiltonian system. The obtained exact solutions include singular and periodic solutions, as well as perturbed bright and dark solitons. For each type of obtained exact solution, we pick one representative to plot its graph, so as to visually display our theoretical results. Compared with other methods for finding exact solutions to deterministic or stochastic partial differential equations, the dynamical system approach has the merit of yielding all possible exact solutions. The stochastic semi-linear Schrödinger equation under consideration can be used to portray the propagation of pulses in an optical fiber, so our study therefore lays the foundation for discovering new solitons optimized for optical communication and contributes to the improvement of optical technologies.
Keywords:  stochastic semi-linear Schrödinger equations      self-phase modulation      soliton solutions      Stratonvich’s calculus  
Received:  13 March 2025      Revised:  30 May 2025      Accepted manuscript online:  20 June 2025
PACS:  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
Fund: Chengqiang Wang is partially supported by Qing Lan Project of Jiangsu, Suqian Sci. & Tech. Program (Grant Nos. Z2023131 and M202206), the Startup Foundation for Newly Recruited Employees, the Xichu Talents Foundation of Suqian University (Grant No. 2022XRC033), and the National Natural Science Foundation of China (Grant No. 11701050).
Corresponding Authors:  Cheng-Qiang Wang     E-mail:  chengqiangwang2022@foxmail.com
About author:  2025-124205-250415.pdf

Cite this article: 

Cheng-Qiang Wang(王成强), Xiang-Qing Zhao(赵向青), Yu-Lin Zhang(张玉林), and Zhi-Wei Lv(吕志伟) Stability, bifurcation, chaotic pattern, phase portrait and exact solutions of a class of semi-linear Schrödinger equations with Kudryashov’s power law self-phase modulation and multiplicative white noise based on Stratonvich’s calculus 2025 Chin. Phys. B 34 124205

[1] Yang Y Q, Yan Z Y and Malomed B A 2015 Chaos 25 103112
[2] Kudryashov N A 2021 Mathematics 9 3024
[3] Ma W X, Osman M S, Arshed S, Raza N and Srivastava H M 2021 Chin. J. Phys. 72 475
[4] Kudryashov N A 2020 Optik 206 164335
[5] Wang T Y, Zhou Q and Liu W J 2022 Chin. Phys. B 31 020501
[6] Zhang Y F, Wang H F and Bai N 2022 Acta Math. Appl. Sin. 38 579
[7] Mirzazadeh M, Hashemi M S, Akbulu A, Rehman H U, Iqbal I and Eslami M 2024 Math. Methods Appl. Sci. 47 5355
[8] Yildirim Y and Biswas A 2024 Phys. Lett. A 527 129998
[9] Arnous A H, Murad M A S, Biswas A and Yildirim Y 2025 Ain Shams Eng. J. 16 103243
[10] Zayed E M E, El-Shater M, Elsherbeny A M, Arnous A H, Biswas A, Yildirim Y, et al. 2025 Ain Shams Eng. J. 16 103260
[11] Zhou Y Q, Liu Q, Zhang J and Zhang W N 2006 Appl. Math. Comput. 177 495
[12] Zhou Y Q, Liu Q and Zhang W N 2011 Nonlinear Anal. 74 1047
[13] Kumara S and Kumar A 2022 Math. Comput. Simul. 201 254
[14] Li Y, Hao X Z, Yao R X, Xia Y R and Shen Y L 2023 Math. Comput. Simul. 208 57
[15] Ashraf M A, Seadawy A R, Rizvi S T R and Althobaiti A 2024 Opt. Quant. Electron. 56 1243
[16] Li Z and Liu C Y 2024 Results Phys. 56 107305
[17] Zayed E M E, Nofal T A, Alngar M E M and El-Horbaty M M 2021 Optik 231 166381
[18] Zhou Q, Huang Z H, Sun Y Z, Triki H, Liu W J and Biswas A 2022 Nonlinear Dynam. 111 5757
[19] Zayed E M E, Gepreel K A and El-Horbaty M 2023 Optik 286 170975
[20] Zayed E M E, Shohib R M A and Alngar M E M 2023 Optik 278 170736
[21] Zayed E M E and Alngar M E M 2021 Optik 227 166099
[22] Kudryashov N A 2022 Optik 259 168975
[23] Secer A 2022 Optik 268 169831
[24] Yildirim Y, Biswas A and Alshehri H M 2022 Optik 264 169336
[25] Zayed E M E, Alngar M E M, Shohib R M A, Biswas A, Yildirim Y, Alshomrani A S and Alshehri H M 2022 Optik 264 169369
[26] Zhou Q, Sun Y Z, Triki H, Zhong Y, Zeng Z L and MirzazadehM2022 Results Phys. 41 105898
[27] AlQahtani S A, Alngar M E M, Shohib R M A and Pathak P 2023 Chaos Solitons Fract. 171 113498
[28] Chen D and Li Z 2023 Optik 277 170687
[29] Cakicioglu H, Ozisik M, Secer A and Bayram M 2023 Optik 279 170776
[30] Li R J, Sinnah Z A B, Shatouri Z M, Manafian J, Aghdaei M F and Kadi A 2023 Results Phys. 46 106293
[31] Akram G, Sadaf M and Khan M A U 2023 Math. Comput. Simul. 206 1
[32] El-Ganainia S and Kumarb S 2023 Math. Comput. Simul. 208 28
[33] Izgi Z P 2023 Math. Comput. Simul. 208 535
[34] Butt A R, Umair M and Basendwah G A 2024 Optik 308 171801
[35] Lu T X, Tang L, Chen Y L and Chen C W 2024 Results Phys. 60 107679
[36] Khan M I, Farooq A, Nisar K S and Shah N A 2024 Results Phys. 59 107593
[37] MuradMA S, Ismael H F, Sulaiman T A and Bulut H 2024 Opt. Quant. Electron. 56 76
[38] Trouba N T, Alngar M E M, Mahmoud H A and Shohib R M A 2024 Ain Shams Eng. J. 15 103117
[39] Wazwaz A M 2024 Ukr. J. Phys. Opt. 25 S1131
[40] Liu L, Zhou X X, Xie X Y and Sun W R 2025 Math. Comput. Simul. 228 466
[41] Yao Y L, Yi H H, Zhang X and Ma G L 2023 Chin. Phys.. Lett. 40 100503
[42] Zhang X F, Xu T, Li M and Meng Y 2023 Chin. Phys.. B 32 010505
[43] Yuan R R, Shi Y, Zhao S L and Wang W Z 2024 Chaos Solitons Fract. 181 114709
[44] Zayed E M E, Alurrfi K A E, Hasek A M M, Arar N, Arnous A H and Yildirim Y 2024 Phys. Scr. 99 095220
[45] Zayed E M E, Arnous A H, Secer A, Ozisik M, Bayram M, Shah N A and Chung J D 2024 Results Phys. 58 107439
[46] Wang C Q, Zhao X Q, Mai Q Y and Lv Z W 2025 Phys. Scr. 100 025257
[47] Chahlaoui Y, Shohib R M A and Alngar M E M 2024 Opt. Quant. Electron. 56 1108
[48] Yi X Q, Zhou Y Q, Liu Q, Li K B and Zhang S N 2025 Qual. Theory Dyn. Syst. 24 55
[49] Arshed S, Raza N and Alansari M 2021 Ain Shams Eng. J. 12 3091
[50] Liu H D, Tian B, Gao X T, Shan HWand Ma J Y 2025 Nonlinear Dyn. 113 12057
[51] Rehman H U, Aljohani A F, Althobaiti A, Althobaiti S and Iqbal I 2024 Opt. Quantum Electron. 56 1336
[52] Kloeden P E and Platen E 1992 Numerical Solution of Stochastic Differential Equations (Heidelberg: Springer Berlin) pp. 305
[53] Al-Askar F M 2023 Results Phys. 52 106784
[54] Fan E G 2002 J. Phys. A Math. Gen. 35 6853
[55] Wazwaz A-M 2004 Appl. Math. Comput. 154 713
[56] El-Wakil S A and Abdou M A 2007 Chaos Solitons Fract. 31 840
[57] Wang M L, Li X Z and Zhang J L 2008 Phys. Lett. A 372 417
[58] Zayed E M E and Gepreel K A 2009 J. Math. Phys. 50 013502
[59] Liu C S 2010 Comput. Phys. Commun. 181 317
[60] Li L X, Li E Q and Wang M L 2010 Appl. Math. J. Chin. Univ. 25 454
[61] Srivastava H, Baleanu D, Machado J A T, Osman M S, Rezazadeh H, Arshed S and Günerhan H 2020 Phys. Scr. 95 075217
[62] Tang L, Biswas A and Yildirim Y 2023 Contemp. Math. 4 981
[63] Wang C Q, Zhao X Q, Mai Q Y and Lv Z W 2024 Fractal Fract. 8 83
[64] Rahman M U, Sun M, Boulaaras S and Baleanu D 2024 Bound. Value Probl. 2024 15
[65] Wang C Q, Zhao X Q, Zhang Y L and Lv Z W 2023 Entropy 25 359
[66] Perko L 2001 Differential Equations and Dynamical Systems 3rd Edn. (New York: Springer) pp. 119-127
[67] Liu X M, Zhang Z Y and Liu W J 2023 Chin. Phys. Lett. 40 070501
[1] The N-soliton solutions of the three-component coupled nonlinear Hirota equations based on Riemann-Hilbert method
Xin Wang(王昕) and Zhi-Hui Zhang(张智辉). Chin. Phys. B, 2025, 34(9): 090202.
[2] An integrable generalization of the Fokas-Lenells equation: Darboux transformation, reduction and explicit soliton solutions
Jiao Wei(魏姣), Xianguo Geng(耿献国), and Xin Wang(王鑫). Chin. Phys. B, 2024, 33(7): 070202.
[3] Multi-soliton solutions, breather-like and bound-state solitons for complex modified Korteweg-de Vries equation in optical fibers
Zhong-Zhou Lan(兰中周). Chin. Phys. B, 2024, 33(6): 060201.
[4] Interaction solutions and localized waves to the (2+1)-dimensional Hirota-Satsuma-Ito equation with variable coefficient
Xinying Yan(闫鑫颖), Jinzhou Liu(刘锦洲), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2023, 32(7): 070201.
[5] Riemann-Hilbert approach of the complex Sharma-Tasso-Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[6] Diverse soliton solutions and dynamical analysis of the discrete coupled mKdV equation with 4×4 Lax pair
Xue-Ke Liu(刘雪珂) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2023, 32(12): 120203.
[7] Darboux transformation, infinite conservation laws, and exact solutions for the nonlocal Hirota equation with variable coefficients
Jinzhou Liu(刘锦洲), Xinying Yan(闫鑫颖), Meng Jin(金梦), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2023, 32(12): 120401.
[8] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[9] Soliton, breather, and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints
Jun-Cai Pu(蒲俊才), Jun Li(李军), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(6): 060202.
[10] Soliton interactions and asymptotic state analysis in a discrete nonlocal nonlinear self-dual network equation of reverse-space type
Cui-Lian Yuan(袁翠连) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2021, 30(3): 030201.
[11] Variation of electron density in spectral broadening process in solid thin plates at 400 nm
Si-Yuan Xu(许思源), Yi-Tan Gao(高亦谈), Xiao-Xian Zhu(朱孝先), Kun Zhao(赵昆), Jiang-Feng Zhu(朱江峰), and Zhi-Yi Wei(魏志义). Chin. Phys. B, 2021, 30(10): 104205.
[12] Two-frequency amplification in a semiconductor tapered amplifier for cold atom experiments
Zhi-Xin Meng(孟至欣), Yu-Hang Li(李宇航), Yan-Ying Feng(冯焱颖). Chin. Phys. B, 2018, 27(9): 094201.
[13] Multi-soliton solutions for the coupled modified nonlinear Schrödinger equations via Riemann-Hilbert approach
Zhou-Zheng Kang(康周正), Tie-Cheng Xia(夏铁成), Xi Ma(马茜). Chin. Phys. B, 2018, 27(7): 070201.
[14] N-soliton solutions for the nonlocal two-wave interaction system via the Riemann-Hilbert method
Si-Qi Xu(徐思齐), Xian-Guo Geng(耿献国). Chin. Phys. B, 2018, 27(12): 120202.
[15] Spectral broadening induced by intense ultra-short pulse in 4H-SiC crystals
Chun-hua Xu(徐春华), Teng-fei Yan(闫腾飞), Gang Wang(王刚), Wen-jun Wang(王文军), Jing-kui Liang(梁敬魁), Xiao-long Chen(陈小龙). Chin. Phys. B, 2016, 25(6): 064206.
No Suggested Reading articles found!