Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 118801    DOI: 10.1088/1674-1056/addcc4
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

Thorough numerical simulations of silicon heterojunction solar cells focusing on the sun-side-doped layer

Jiufang Han(韩久放)1,2,3,†, Yimeng Song(宋祎萌)4,†, Xiran Yu(于夕然)1,2,3, Conghui Jiang(姜聪慧)5, Wenxin Wang(王文新)1,6, Haiqiang Jia(贾海强)1,2,3,7, Chunhua Du(杜春花)1,3,6,‡, and Hong Chen(陈弘)1,2,3,6,7,§
1 Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Second Affiliation University of Chinese Academy of Sciences, Beijing 100049, China;
3 Third Affiliation School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
4 Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516000, China;
5 Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China;
6 The Yangtze River Delta Physics Research Center, Liyang 213000, China;
7 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  To improve the photovoltaic conversion efficiency (PCE) of silicon heterojunction (SHJ) solar cells, this study focuses on optimizing the physical parameters of the sun-side-doped layer and proposes strategies to address the challenges posed by Fermi level pinning in wide bandgap designs. Using AFORS-HET simulations, we systematically investigate the effects of bandgap width, doping concentration, and defect state distribution on the energy band structure, interface electric field, and carrier transport dynamics. The results reveal that maintaining the Fermi level within 0.3 eV of the conduction band is essential for optimal device performance. A wider bandgap (> 1.8 eV) enhances the utilization of short-wavelength light and significantly suppresses interface recombination, leading to an increase in short-circuit current density (Jsc) by 0.8 mA/cm2. This benefit comes with a delicate balance between minimizing defect state density and improving doping efficiency. This study provides theoretical insights into the optimization of doped layer physical parameters and proposes practical solutions, including nano-crystallization and low-doping interface strategies, to improve the performance of SHJ solar cells and support industrial applications.
Keywords:  silicon heterojunction (SHJ) solar cell      AFORS-HET      numerical simulation      Fermi level pinning  
Received:  22 April 2025      Revised:  22 April 2025      Accepted manuscript online:  23 May 2025
PACS:  88.40.hj (Efficiency and performance of solar cells)  
  52.50.-b (Plasma production and heating)  
  61.72.uf (Ge and Si)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61991441 and 62004218), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB01000000), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2021005).
Corresponding Authors:  Chunhua Du, Hong Chen     E-mail:  duchunhua@iphy.ac.cn;hchen@iphy.ac.cn

Cite this article: 

Jiufang Han(韩久放), Yimeng Song(宋祎萌), Xiran Yu(于夕然), Conghui Jiang(姜聪慧), Wenxin Wang(王文新), Haiqiang Jia(贾海强), Chunhua Du(杜春花), and Hong Chen(陈弘) Thorough numerical simulations of silicon heterojunction solar cells focusing on the sun-side-doped layer 2025 Chin. Phys. B 34 118801

[1] De Wolf S, Descoeudres A, Holman Z C and Ballif C 2012 Green 2 7
[2] Razzaq A, Allen T G, Liu W, Liu Z and De Wolf S 2022 Joule 6 514
[3] Jiang C, Zhang G, Hong Z, Chen J, Li Y, Yuan X, Lin Y, Yu C, Wang T and Song T 2023 Adv. Mater. 35 2208042
[4] Duan W, Lambertz A, Bittkau K, Qiu D, Qiu K, Rau U and Ding K 2021 Progress in Photovoltaics: Research and Applications 30 384
[5] Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H and Yamamoto K 2017 Nature Energy 2 17032
[6] Kerr M J, Cuevas A and Campbell P 2003 Progress in Photovoltaics: Research and Applications 11 97
[7] Long W, Yin S, Peng F, Yang M, Fang L, Ru X, Qu M, Lin H and Xu X 2021 Sol. Energy Mater. Sol. Cells 231 111291
[8] Huang S, Xu C, Wang G, Du J, Yu J, Zhang L, Meng F, Zhao D, Li R, Huang H, Liu Z and Liu W 2024 Mater. Lett. 357 135768
[9] Hao B, Song Y, Jiang C, Han J, Jiang Y, Deng Z, Wang W, Jia H, Chen H and Du C 2023 JaJAP 62 061002
[10] Boccard M and Holman Z C 2015 JAP 118 065704
[11] Kohler M, Pomaska M, Procel P, Santbergen R, Zamchiy A, Macco B, Lambertz A, Duan W, Cao P, Klingebiel B, Li S, Eberst A, Luysberg M, Qiu K, Isabella O, Finger F, Kirchartz T, Rau U and Ding K 2021 Nature Energy 6 529
[12] Pomaska M, Kohler F, Zastrow U, Mock J, Pennartz F, Muthmann S, Astakhov O, Carius R, Finger F and Ding K 2016 JAP 119 175303
[13] Mandal S, Das G, Dhar S, Tomy R M, Mukhopadhyay S, Banerjee C and Barua A K 2015 MCP 157 130
[14] Jiang K, Liu W, Yang Y, Yan Z, Huang S, Li Z, Li X, Zhang L and Liu Z 2021 Journal of Materials Science: Materials in Electronics 33 416
[15] Zhao Y, Procel P, Han C, Mazzarella L, Yang G, Weeber A, Zeman M and Isabella O 2021 Sol. Energy Mater. Sol. Cells 219 110779
[16] Umishio H, Sai H, Koida T and Matsui T 2020 Progress in Photovoltaics: Research and Applications 29 344
[17] Lin H, Yang M, Ru X, Wang G, Yin S, Peng F, Hong C, Qu M, Lu J, Fang L, Han C, Procel P, Isabella O, Gao P, Li Z and Xu X 2023 Nature Energy 8 789
[18] Liu W, Zhang L, Yang X, Shi J, Yan L, Xu L, Wu Z, Chen R, Peng J, Kang J, Wang K, Meng F, De Wolf S and Liu Z 2020 Joule 4 913
[19] Khokhar M Q, Mallem K, Fan X, Kim Y, Hussain S Q, Cho E C and Yi J 2022 ECS Journal of Solid State Science and Technology 11 085001
[20] Varache R, Leendertz C, Gueunier-Farret M E, Haschke J, Munoz D and Korte L 2015 Sol. Energy Mater. Sol. Cells 141 14
[21] Mazzarella L, Morales-Vilches A B, Hendrichs M, Kirner S, Korte L, Schlatmann R and Stannowski B 2017 IEEE Journal of Photovoltaics 8 70
[22] Qiu D, Duan W, Lambertz A, Bittkau K, Steuter P, Liu Y, Gad A, Pomaska M, Rau U and Ding K 2020 Sol. Energy Mater. Sol. Cells 209 110471
[23] Alkharasani W M, Amin N, Shahahmadi S A, Alkahtani A A, Mohamad I S B, Chelvanathan P and Sieh Kiong T 2022 Materials 15 3508
[24] Deka H, Sunaniya A and Agarwal P 2022 IEEE Journal of Photovoltaics 12 204
[25] Kanneboina V 2020 Journal of Computational Electronics 20 344
[26] Riaz M, Kadhim A C, Earles S K and Azzahrani A 2018 Opt. Express 26 A626
[27] Zhao L, Wang G, Diao H and Wang W 2018 J. Phys. D: Appl. Phys. 51 045501
[28] Dey A and Das D 2022 ApSS 597 153657
[29] Berntsen A J, van der Weg W F, Stolk P A and Saris F W 1993 Phys. Rev. B 48 14656
[30] Saive R 2019 IEEE Journal of Photovoltaics 9 1477
[31] Obikoya G D, Soman A, Das U K and Hegedus S S 2023 Sol. Energy Mater. Sol. Cells 263 112586
[32] Liu W, Shi J, Zhang L, Han A, Huang S, Li X, Peng J, Yang Y, Gao Y and Yu J 2022 Nature Energy 7 427
[1] High-resolution imaging of magnetic fields of banknote anti-counterfeiting strip using fiber diamond probe
Xu-Tong Zhao(赵旭彤), Fei-Yue He(何飞越), Ya-Wen Xue(薛雅文), Wen-Hao Ma(马文豪), Xiao-Han Yin(殷筱晗), Sheng-Kai Xia(夏圣开), Ming-Jing Zeng(曾明菁), and Guan-Xiang Du(杜关祥). Chin. Phys. B, 2024, 33(4): 048502.
[2] Flow features induced by a rod-shaped microswimmer and its swimming efficiency: A two-dimensional numerical study
Siwen Li(李斯文), Yuxiang Ying(应宇翔), Tongxiao Jiang(姜童晓), and Deming Nie(聂德明). Chin. Phys. B, 2024, 33(12): 124701.
[3] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[4] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[5] Effect of local wall temperature on hypersonic boundary layer stability and transition
Ruiyang Lu(鲁锐洋) and Zhangfeng Huang(黄章峰). Chin. Phys. B, 2023, 32(11): 114701.
[6] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[7] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[8] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[9] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[10] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[11] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[12] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[13] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[14] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[15] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
No Suggested Reading articles found!