| INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
|
|
|
Thorough numerical simulations of silicon heterojunction solar cells focusing on the sun-side-doped layer |
| Jiufang Han(韩久放)1,2,3,†, Yimeng Song(宋祎萌)4,†, Xiran Yu(于夕然)1,2,3, Conghui Jiang(姜聪慧)5, Wenxin Wang(王文新)1,6, Haiqiang Jia(贾海强)1,2,3,7, Chunhua Du(杜春花)1,3,6,‡, and Hong Chen(陈弘)1,2,3,6,7,§ |
1 Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 Second Affiliation University of Chinese Academy of Sciences, Beijing 100049, China; 3 Third Affiliation School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 4 Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516000, China; 5 Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China; 6 The Yangtze River Delta Physics Research Center, Liyang 213000, China; 7 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
|
|
Abstract To improve the photovoltaic conversion efficiency (PCE) of silicon heterojunction (SHJ) solar cells, this study focuses on optimizing the physical parameters of the sun-side-doped layer and proposes strategies to address the challenges posed by Fermi level pinning in wide bandgap designs. Using AFORS-HET simulations, we systematically investigate the effects of bandgap width, doping concentration, and defect state distribution on the energy band structure, interface electric field, and carrier transport dynamics. The results reveal that maintaining the Fermi level within 0.3 eV of the conduction band is essential for optimal device performance. A wider bandgap (> 1.8 eV) enhances the utilization of short-wavelength light and significantly suppresses interface recombination, leading to an increase in short-circuit current density (Jsc) by 0.8 mA/cm2. This benefit comes with a delicate balance between minimizing defect state density and improving doping efficiency. This study provides theoretical insights into the optimization of doped layer physical parameters and proposes practical solutions, including nano-crystallization and low-doping interface strategies, to improve the performance of SHJ solar cells and support industrial applications.
|
Received: 22 April 2025
Revised: 22 April 2025
Accepted manuscript online: 23 May 2025
|
|
PACS:
|
88.40.hj
|
(Efficiency and performance of solar cells)
|
| |
52.50.-b
|
(Plasma production and heating)
|
| |
61.72.uf
|
(Ge and Si)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61991441 and 62004218), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB01000000), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2021005). |
Corresponding Authors:
Chunhua Du, Hong Chen
E-mail: duchunhua@iphy.ac.cn;hchen@iphy.ac.cn
|
Cite this article:
Jiufang Han(韩久放), Yimeng Song(宋祎萌), Xiran Yu(于夕然), Conghui Jiang(姜聪慧), Wenxin Wang(王文新), Haiqiang Jia(贾海强), Chunhua Du(杜春花), and Hong Chen(陈弘) Thorough numerical simulations of silicon heterojunction solar cells focusing on the sun-side-doped layer 2025 Chin. Phys. B 34 118801
|
[1] De Wolf S, Descoeudres A, Holman Z C and Ballif C 2012 Green 2 7 [2] Razzaq A, Allen T G, Liu W, Liu Z and De Wolf S 2022 Joule 6 514 [3] Jiang C, Zhang G, Hong Z, Chen J, Li Y, Yuan X, Lin Y, Yu C, Wang T and Song T 2023 Adv. Mater. 35 2208042 [4] Duan W, Lambertz A, Bittkau K, Qiu D, Qiu K, Rau U and Ding K 2021 Progress in Photovoltaics: Research and Applications 30 384 [5] Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H and Yamamoto K 2017 Nature Energy 2 17032 [6] Kerr M J, Cuevas A and Campbell P 2003 Progress in Photovoltaics: Research and Applications 11 97 [7] Long W, Yin S, Peng F, Yang M, Fang L, Ru X, Qu M, Lin H and Xu X 2021 Sol. Energy Mater. Sol. Cells 231 111291 [8] Huang S, Xu C, Wang G, Du J, Yu J, Zhang L, Meng F, Zhao D, Li R, Huang H, Liu Z and Liu W 2024 Mater. Lett. 357 135768 [9] Hao B, Song Y, Jiang C, Han J, Jiang Y, Deng Z, Wang W, Jia H, Chen H and Du C 2023 JaJAP 62 061002 [10] Boccard M and Holman Z C 2015 JAP 118 065704 [11] Kohler M, Pomaska M, Procel P, Santbergen R, Zamchiy A, Macco B, Lambertz A, Duan W, Cao P, Klingebiel B, Li S, Eberst A, Luysberg M, Qiu K, Isabella O, Finger F, Kirchartz T, Rau U and Ding K 2021 Nature Energy 6 529 [12] Pomaska M, Kohler F, Zastrow U, Mock J, Pennartz F, Muthmann S, Astakhov O, Carius R, Finger F and Ding K 2016 JAP 119 175303 [13] Mandal S, Das G, Dhar S, Tomy R M, Mukhopadhyay S, Banerjee C and Barua A K 2015 MCP 157 130 [14] Jiang K, Liu W, Yang Y, Yan Z, Huang S, Li Z, Li X, Zhang L and Liu Z 2021 Journal of Materials Science: Materials in Electronics 33 416 [15] Zhao Y, Procel P, Han C, Mazzarella L, Yang G, Weeber A, Zeman M and Isabella O 2021 Sol. Energy Mater. Sol. Cells 219 110779 [16] Umishio H, Sai H, Koida T and Matsui T 2020 Progress in Photovoltaics: Research and Applications 29 344 [17] Lin H, Yang M, Ru X, Wang G, Yin S, Peng F, Hong C, Qu M, Lu J, Fang L, Han C, Procel P, Isabella O, Gao P, Li Z and Xu X 2023 Nature Energy 8 789 [18] Liu W, Zhang L, Yang X, Shi J, Yan L, Xu L, Wu Z, Chen R, Peng J, Kang J, Wang K, Meng F, De Wolf S and Liu Z 2020 Joule 4 913 [19] Khokhar M Q, Mallem K, Fan X, Kim Y, Hussain S Q, Cho E C and Yi J 2022 ECS Journal of Solid State Science and Technology 11 085001 [20] Varache R, Leendertz C, Gueunier-Farret M E, Haschke J, Munoz D and Korte L 2015 Sol. Energy Mater. Sol. Cells 141 14 [21] Mazzarella L, Morales-Vilches A B, Hendrichs M, Kirner S, Korte L, Schlatmann R and Stannowski B 2017 IEEE Journal of Photovoltaics 8 70 [22] Qiu D, Duan W, Lambertz A, Bittkau K, Steuter P, Liu Y, Gad A, Pomaska M, Rau U and Ding K 2020 Sol. Energy Mater. Sol. Cells 209 110471 [23] Alkharasani W M, Amin N, Shahahmadi S A, Alkahtani A A, Mohamad I S B, Chelvanathan P and Sieh Kiong T 2022 Materials 15 3508 [24] Deka H, Sunaniya A and Agarwal P 2022 IEEE Journal of Photovoltaics 12 204 [25] Kanneboina V 2020 Journal of Computational Electronics 20 344 [26] Riaz M, Kadhim A C, Earles S K and Azzahrani A 2018 Opt. Express 26 A626 [27] Zhao L, Wang G, Diao H and Wang W 2018 J. Phys. D: Appl. Phys. 51 045501 [28] Dey A and Das D 2022 ApSS 597 153657 [29] Berntsen A J, van der Weg W F, Stolk P A and Saris F W 1993 Phys. Rev. B 48 14656 [30] Saive R 2019 IEEE Journal of Photovoltaics 9 1477 [31] Obikoya G D, Soman A, Das U K and Hegedus S S 2023 Sol. Energy Mater. Sol. Cells 263 112586 [32] Liu W, Shi J, Zhang L, Han A, Huang S, Li X, Peng J, Yang Y, Gao Y and Yu J 2022 Nature Energy 7 427 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|