Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 048502    DOI: 10.1088/1674-1056/ad1b44
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

High-resolution imaging of magnetic fields of banknote anti-counterfeiting strip using fiber diamond probe

Xu-Tong Zhao(赵旭彤)1, Fei-Yue He(何飞越)1, Ya-Wen Xue(薛雅文)2, Wen-Hao Ma(马文豪)1, Xiao-Han Yin(殷筱晗)1, Sheng-Kai Xia(夏圣开)3, Ming-Jing Zeng(曾明菁)4, and Guan-Xiang Du(杜关祥)1,†
1 College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
3 School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
4 Bell Honors School, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Abstract  Counterfeiting of modern banknotes poses a significant challenge, prompting the use of various preventive measures. One such measure is the magnetic anti-counterfeiting strip. However, due to its inherent weak magnetic properties, visualizing its magnetic distribution has been a longstanding challenge. In this work, we introduce an innovative method by using a fiber optic diamond probe, a highly sensitive quantum sensor designed specifically for detecting extremely weak magnetic fields. We employ this probe to achieve high-resolution imaging of the magnetic fields associated with the RMB 50 denomination anti-counterfeiting strip. Additionally, we conduct computer simulations by using COMSOL Multiphysics software to deduce the potential geometric characteristics and material composition of the magnetic region within the anti-counterfeiting strip. The findings and method presented in this study hold broader significance, extending the RMB 50 denomination to various denominations of the Chinese currency and other items that employ magnetic anti-counterfeiting strips. These advances have the potential to significantly improve and promote security measures in order to prevent the banknotes from being counterfeited.
Keywords:  banknote anti-counterfeiting strip      nitrogen—vacancy (NV) centers      magnetic field imaging      numerical simulation  
Received:  05 October 2023      Revised:  20 November 2023      Accepted manuscript online:  05 January 2024
PACS:  85.75.Ss (Magnetic field sensors using spin polarized transport)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFB2012600) and the Shanghai Aerospace Science and Technology Innovation Fund, China (Grant No. SAST-2022-102).
Corresponding Authors:  Guan-Xiang Du     E-mail:  duguanxiang@njupt.edu.cn

Cite this article: 

Xu-Tong Zhao(赵旭彤), Fei-Yue He(何飞越), Ya-Wen Xue(薛雅文), Wen-Hao Ma(马文豪), Xiao-Han Yin(殷筱晗), Sheng-Kai Xia(夏圣开), Ming-Jing Zeng(曾明菁), and Guan-Xiang Du(杜关祥) High-resolution imaging of magnetic fields of banknote anti-counterfeiting strip using fiber diamond probe 2024 Chin. Phys. B 33 048502

[1] Yuan W Q and Li Z Q 2015 Electronic Design Engineering. 23 110 (in Chinese)
[2] Weiss B P, Lima E A, Fong L E and Baudenbacher F J 2007 Journal of Geophysical Research:Solid Earth 112 B9
[3] Wang M S, Kang L X, Su J W, Zhang L M, Dai H W, Cheng H, Han X T, Zhai T Y, Liu Z and Han J B 2020 Nanoscale 12 16427
[4] Serri M, Cucinotta G, Poggini L, Serrano G, Sainctavit P, Strychalska-Nowak J, Politano A, Bonaccorso F, Caneschi A, Cava R J, Sessoli R, Ottaviano L, Klimczuk T, Pellegrini V and Mannini M 2020 Adv. Mater. 32 2000566
[5] Uehara M and Nakamura N 2007 Rev Sci Instrum. 78 043708
[6] Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J and Hollenberg L C 2013 Phys. Rep. 528 1
[7] Gruber A, Drabenstedt A, Tietz C, Fleury L, Wrachtrup J and Borczyskowski C V 1997 Science 276 2012
[8] Yang B, Dong M M, He W H, Liu Y, Feng C M, Wang Y J and Du G X 2019 IEEE T. Microw. Theory 67 2451
[9] Yin X H, Liu X Y, Gu B X, Zhang J J, Li X C and Du G X 2021 Int. J. RF Microw. Comput. Aided Eng. 32 23036
[10] Rondin L, Tetienne J P, Hingant T, Roch J F, Maletinsky P and Jacques V 2014 Rep. Prog. Phys. 77 056503
[11] Schirhagl R, Chang K, Loretz M and Degen C L 2014 Rev. Phys. Chem. 65 83
[12] Casola F, Van Der Sar T and Yacoby A 2018 Nat. Rev. Mater. 3 17088
[13] Taylor J M, Cappellaro P, Childress L, Jiang L, Budker D, Hemmer P R, Yacoby A, Walsworth R and Lukin M D 2008 Nat. Phys. 4 810
[14] Fu R R, Weiss B P, Lima E A, Harrison R J, Bai X N, Desch S J, Ebel D S, Suavet C, Wang H P, Glenn D, Sage D L, Kasama T, Walsworth R L and Kuan A T 2014 Science 346 1089
[15] Farchi E, Ebert Y, Farfurnik D, Haim G, Shaar R and Bar-Gill N 2017 Spin 7 1740015
[16] Glenn D R, Lee K, Park H, Weissleder R, Yacoby A, Lukin M D, Lee H, Walsworth R L and Connolly C B 2015 Nat. Methods 12 736
[17] Le Sage D, Arai K, Glenn D R, DeVience S J, Pham L M, Rahn-Lee L, Lukin M D, Yacoby A, Komeili A and Walsworth R L 2013 Nature 496 486
[18] Gould M, Barbour R J, Thomas N, Arami H, Krishnan K M and Fu K M C 2014 Appl. Phys. Lett. 105 072406
[19] Shao L B, Zhang M, Markham M, Edmonds A M and Lončar M 2016 Phys. Rev. Appl. 6 064008
[20] Horsley A, Appel P, Wolters J, Achard J, Tallaire A, Maletinsky P and Treutlein P 2018 Phys. Rev. Appl. 10 044039
[21] Goldman M L, Doherty M W, Sipahigil A, Yao N Y, Bennett S D, Manson N B, Kubanek A and Lukin M D 2017 Phys. Rev. B 91 165201
[22] Gruber A, Drabenstedt A, Tietz C, Fleury L, Wrachtrup J and Borczyskowski C V 1997 Science 276 2012
[23] Doherty M W, Dolde F, Fedder H, Jelezko F, Wrachtrup J, Manson N B and Hollenberg L C L 2012 Phys. Rev. B 85 205203
[24] Levine E V, Turner M J, Kehayias P, Hart C A, Langellier N, Trubko R, Glenn D R, Fu R R and Walsworth R L 2019 Nanophotonics 8 1945
[25] Bai R X, Yang F, Liu P, Gao T R, Zhou L, Yin, X H, Zhu X Y, Ma W H, He F Y, Chen N C, Sun Y, Ma J T, Yu T and Du G X 2022 Appl. Phys. Lett. 120 044003
[26] Dong M M, Hu Z Z, Liu Y, Yang B, Wang Y J and Du G X 2018 Appl. Phys. Lett. 113 131105
[27] Duan D, Du G X, Kavatamane V K, Arumugam S, Tzeng Y K, Chang H C and Balasubramanian G 2019 Opt. Express 27 6734
[1] Design of compact integrated diamond nitrogen-vacancy center quantum probe
Sheng-Kai Xia(夏圣开), Wen-Tao Lu(卢文韬), Xu-Tong Zhao(赵旭彤), Ya-Wen Xue(薛雅文), Zeng-Bo Xu(许增博), Shi-Yu Ge(葛仕宇), Yang Wang(汪洋), Lin-Yan Yu(虞林嫣), Yu-Chen Bian(卞雨辰), Si-Han An(安思瀚), Bo Yang(杨博), Jian-Jun Xiang(向建军), and Guan-Xiang Du(杜关祥). Chin. Phys. B, 2024, 33(5): 054202.
[2] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[3] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[4] Effect of local wall temperature on hypersonic boundary layer stability and transition
Ruiyang Lu(鲁锐洋) and Zhangfeng Huang(黄章峰). Chin. Phys. B, 2023, 32(11): 114701.
[5] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[6] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[7] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[8] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[9] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[10] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[11] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[12] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[13] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[14] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[15] Numerical simulation of chorus-driving acceleration of relativistic electrons at extremely low L-shell during geomagnetic storms
Zhen-Xia Zhang(张振霞), Ruo-Xian Zhou(周若贤), Man Hua(花漫), Xin-Qiao Li(李新乔), Bin-Bin Ni(倪彬彬), and Ju-Tao Yang(杨巨涛). Chin. Phys. B, 2021, 30(10): 109401.
No Suggested Reading articles found!