Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 124701    DOI: 10.1088/1674-1056/ad84c3
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Flow features induced by a rod-shaped microswimmer and its swimming efficiency: A two-dimensional numerical study

Siwen Li(李斯文)1, Yuxiang Ying(应宇翔)2, Tongxiao Jiang(姜童晓)1, and Deming Nie(聂德明)1,†
1 College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China;
2 Institute of Fluid Engineering, Zhejiang University, Hangzhou 310018, China
Abstract  The swimming performance of rod-shaped microswimmers in a channel was numerically investigated using the two-dimensional lattice Boltzmann method (LBM). We considered variable-length squirmer rods, assembled from circular squirmer models with self-propulsion mechanisms, and analyzed the effects of the Reynolds number (Re), aspect ratio ($\varepsilon$), squirmer-type factor ($\beta $) and blockage ratio ($\kappa$) on swimming efficiency ($\eta$) and power expenditure ($P$). The results show no significant difference in power expenditure between pushers (microswimmers propelled from the tail) and pullers (microswimmers propelled from the head) at the low Reynolds numbers adopted in this study. However, the swimming efficiency of pushers surpasses that of pullers. Moreover, as the degree of channel blockage increases (i.e., $\kappa $ increases), the squirmer rod consumes more energy while swimming, and its swimming efficiency also increases, which is clearly reflected when $\varepsilon \le 3$. Notably, squirmer rods with a larger aspect ratio $\varepsilon $ and a $\beta $ value approaching 0 can achieve high swimming efficiency with lower power expenditure. The advantages of self-propelled microswimmers are manifested when $\varepsilon > 4$ and $\beta = \pm 1$, where the squirmer rod consumes less energy than a passive rod driven by an external field. These findings underscore the potential for designing more efficient microswimmers by carefully considering the interactions between the microswimmer geometry, propulsion mechanism and fluid dynamic environment.
Keywords:  direct numerical simulations      low-Reynolds-number motions      multiphase flows      swimming microorganisms  
Received:  09 July 2024      Revised:  10 September 2024      Accepted manuscript online:  09 October 2024
PACS:  47.27.ek (Direct numerical simulations)  
  47.63.mf (Low-Reynolds-number motions)  
  47.61.Jd (Multiphase flows)  
  47.63.Gd (Swimming microorganisms)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12372251 and 12132015) and the Fundamental Research Funds for the Provincial Universities of Zhejiang (Grant No. 2023YW69).
Corresponding Authors:  Deming Nie     E-mail:  nieinhz@cjlu.edu.cn

Cite this article: 

Siwen Li(李斯文), Yuxiang Ying(应宇翔), Tongxiao Jiang(姜童晓), and Deming Nie(聂德明) Flow features induced by a rod-shaped microswimmer and its swimming efficiency: A two-dimensional numerical study 2024 Chin. Phys. B 33 124701

[1] Ullrich F, Bergeles C, Pokki J, Ergeneman O, Erni S, Chatzipirpiridis G, Pané S, Framme C and Bradley J N 2013 Invest. Ophthalmol. Vis. Sci. 54 2853
[2] Agrahari V, Agrahari V, Chou M L, Chew C H, Noll J and Burnouf T 2020 Biomaterials 260 120163
[3] Wei X, Beltrán-Gastélum M, Karshalev E, de Ávila B E F, Zhou J, Ran D, Angsantikul, Fang R H, Wang J and Zhang L 2019 Nano Lett. 19 1914
[4] Wu Z, Li J, de Ávila B E F, Li T, Gao W, He Q, Zhang L and Wang J 2015 Adv. Funct. Mater. 25 7497
[5] Shintake J, Cacucciolo V, Shea H and Floreano D 2018 Soft Robot. 5 466
[6] Ren Z, Hu W, Dong X and Sitti M 2019 Nat. Commun. 10 2703
[7] Huang C, Lv J, Tian X, Wang Y, Yu Y and Liu J 2015 Sci. Rep. 5 17414
[8] Qiu F and Nelson B J 2015 Eng. 1 021
[9] Gong D, Cai J, Celi N, Feng L, Jiang Y and Zhang D 2018 J. Magn. Magn. Mater. 468 148
[10] Darmawan B A, Lee S B, Go G, Nguyen K T, Lee H S, Nan M, Hong A, Kim C S, Li H, Bang D, Park J and Choi E 2020 Sens. Actuators B Chem. 324 128752
[11] Akolpoglu M B, Dogan N O, Bozuyuk U, Ceylan H, Kizilel S and Sitti M 2020 Adv. Sci. 7 2001256
[12] Alapan Y, Yasa O, Schauer O, Giltinan J, Tabak A F, Sourjik V and Sitti M 2018 Sci. Robot. 3 eaar4423
[13] Magdanz V, Khalil I S M, Simmchen J, Furtado G P, Mohanty S, Gebauer J, Xu H, Klingner A, Aziz A, Medina-Sánchez M, Schmidt O G and Misra S 2020 Sci. Adv. 6 eaba5855
[14] Blake J R 1971 Bull. Aust. Math. Soc. 5 255
[15] Pedley T J 2016 IMA J. Appl. Math. 81 488
[16] Magar V, Goto T and Pedley T J 2003 Q. J. Mech. Appl. Math. 56 65
[17] Magar V and Pedley T J 2005 J. Fluid Mech. 539 93
[18] Nie D, Ying Y, Guan G, Lin J and Ouyang Z 2023 J. Fluid Mech. 960 A31
[19] Ishikawa T, Locsei J T and Pedley T J 2008 J. Fluid Mech. 615 401
[20] Ying Y, Jiang T, Nie D and Lin J 2022 Phys. Fluids 34 013010
[21] Fadda F, Molina J J and Yamamoto R 2020 Phys. Rev. E 101 052608
[22] Rühle F and Stark H 2020 Eur. Phys. J. E 43 1
[23] Zheng K, Wang J, Zhang P and Nie D 2023 AIP Adv. 13 025304
[24] Li G J and Ardekani A M 2014 Phys. Rev. E 90 013010
[25] Lucarini G, Palagi S, Beccai L and Menciassi A 2014 Int. J. Adv. Robot. Syst. 11 116
[26] Acemoglu A and Yesilyurt S 2014 Biophys. J. 106 1537
[27] Ullrich F, Qiu F, Pokki J, Huang T, Pané S and Nelson B J 2016 IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), June 26-29, 2016 Singapore, p. 470
[28] Ghanbari A and Bahrami M 2011 J. Intell. Robot. Syst. 63 399
[29] Omori T, Ito H and Ishikawa T 2020 Proc. Natl. Acad. Sci. USA 117 30201
[30] Ouyang Z, Lin J and Ku X 2018 Phys. Fluids 30 085304
[31] Leshansky A M, Kenneth O, Gat O and Avron J E 2007 New J. Phys. 9 145
[32] Michelin S and Lauga E 2010 Phys. Fluids 22 011401
[33] Chisholm N G, Legendre D, Lauga E and Khair A S 2016 J. Fluid Mech. 796 233
[34] Eastham P S and Shoele K 2020 Phys. Rev. Fluids 5 063102
[35] Binagia J P, Phoa A, Housiadas K D and Shaqfeh E S G 2020 J. Fluid Mech. 900 A4
[36] Wang S and Ardekani A 2012 Phys. Fluids 24 013010
[37] Zhu L, Lauga E and Brandt L 2013 J. Fluid Mech. 726 285
[38] Ouyang Z, Lin Z, Lin J, Yu Z and Phan-Thien N 2023 J. Fluid Mech. 959 A25
[39] Sahari A, Headen D and Behkam B 2012 Biomed. Microdevices 14 999
[40] Merkel T J, Jones S W, Herlihy K P, Kersey F R, Shields A R, Napier M, Luft J C, Wu H, Zamboni W C, Wang A Z, Bear J E and DeSimone J M 2011 Proc. Natl. Acad. Sci. USA 108 586
[41] Nejati S, Vadeghani E M, Khorshidi S and Karkhaneh A 2020 Eur. Polym. J. 122 109353
[42] Christian D A, Cai S, Garbuzenko O B, Harada T, Zajac A L, Minko T and Discher D E 2009 Mol. Pharmaceutics 6 1343
[43] Ying Y, Jiang T, Li S, Nie D and Lin J 2024 Phys. Scr. 99 025304
[44] Zantop A W and Stark H 2020 Soft Matter 16 6400
[45] Ouyang Z and Lin J 2021 Phys. Fluids 33 073102
[46] Ishikawa T 2019 Micromachines 10 33
[47] Biondi S A, Quinn J A and Goldfine H 1998 AIChE J. 44 1923
[48] Zhang J, Liu K and Ding Y 2022 Chin. Phys. B 31 14702
[49] He X and Luo L S 1997 Phys. Rev. E 56 6811
[50] Wolf-Gladrow D A 2004Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction (1st edn.) (Berlin: Springer) p. 9
[51] Qian Y H, d’Humières D and Lallemand P 1992 Europhys. Lett. 17 479
[52] Chapman S and Cowling T G 1970 Math. The Mathematical Theory of Non-Uniform Gases (3rd edn.) (Cambridge: Cambridge University Press) p. 119
[53] Lallemand P and Luo L S 2003 J. Comput. Phys. 184 406
[54] Mei R, Yu D, Shyy W and Luo L S 2002 Phys. Rev. E 65 041203
[55] Aidun C K, Lu Y and Ding E J 1998 J. Fluid Mech. 373 287
[56] Michelin S and Lauga E 2010 Phys. Fluids 22 113901
[57] Li S, Ying Y and Nie D 2023 Fluid Dyn. Res. 55 055504
[1] Effect of local wall temperature on hypersonic boundary layer stability and transition
Ruiyang Lu(鲁锐洋) and Zhangfeng Huang(黄章峰). Chin. Phys. B, 2023, 32(11): 114701.
[2] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
No Suggested Reading articles found!