Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 118501    DOI: 10.1088/1674-1056/ade1c0
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

Degradation mechanisms of Schottky p-GaN gate AlGaN/GaN HEMTs under high-temperature reverse bias stress

Fei Hu(胡飞), Chengbing Pan(潘成兵)†, Xinyuan Zheng(郑鑫源), Yibo Ning(宁一博), Xueyan Li(李雪燕), and Lixia Zhao(赵丽霞)‡
Tianjin Key Laboratory of Intelligent Control of Electrical Equipment, School of Electrical Engineering, Tiangong University, Tianjin 300387, China
Abstract  The degradation mechanisms of Schottky p-GaN gate AlGaN/GaN HEMTs under high-temperature reverse bias (HTRB) stress were investigated and the evolution of the deep traps was identified using deep-level transient spectroscopy. The saturation current of p-GaN gate AlGaN/GaN HEMTs decreased by 18.2% and the threshold voltage shifted positively by 11.6% after the degradation. An electron trap (at 369 K) and a hole trap (at 95 K) were observed in the AlGaN/GaN region, while another hole trap (at 359 K) was found in the p-GaN layer before the stress. Meanwhile, after the stress, the concentration and capture cross section of the hole traps increased in both the p-GaN layer and the AlGaN/GaN region. With regard to the electron trap in the AlGaN/GaN region, the capture cross section increased significantly but the electron trap concentration slightly decreased, which may increase the electron trapping, thereby reducing electrons in the two-dimensional electron gas. These factors result in a positive shift in the threshold voltage and a decrease in the output current. This work provides a new insight into understanding the threshold voltage instability of Schottky p-GaN gate AlGaN/GaN HEMTs.
Keywords:  semiconductor devices      III–V semiconductors      impurity      defects  
Received:  05 February 2025      Revised:  04 June 2025      Accepted manuscript online:  06 June 2025
PACS:  85.30.-z (Semiconductor devices)  
  73.61.Ey (III-V semiconductors)  
  71.55.-i (Impurity and defect levels)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12374395) and the Chinese Institute of Electronics (CIE)-SmartChip Research Project.
Corresponding Authors:  Chengbing Pan, Lixia Zhao     E-mail:  cbpan@tiangong.edu.cn;lxzhao@tiangong.edu.cn

Cite this article: 

Fei Hu(胡飞), Chengbing Pan(潘成兵), Xinyuan Zheng(郑鑫源), Yibo Ning(宁一博), Xueyan Li(李雪燕), and Lixia Zhao(赵丽霞) Degradation mechanisms of Schottky p-GaN gate AlGaN/GaN HEMTs under high-temperature reverse bias stress 2025 Chin. Phys. B 34 118501

[1] Chen L X, Ma M, Cao J C, Sun JW, Que M L and Sun Y F 2021 Chin. Phys. B 30 108502
[2] Jiang X, Li C H, Yang S X, Liang J H, Lai L K, Dong Q Y, Huang W, Liu X Y and Luo W J 2023 Chin. Phys. B 32 037201
[3] Zhao S L, Mi M H, Hou B, Luo J, Wang Y, Dai Y, Zhang J C, Ma X H and Hao Y 2014 Chin. Phys. B 23 107303
[4] Cao Y W, Lv Q J, Yang T P, Mi T T, Wang X W, Liu W and Liu J L 2023 Chin. Phys. B 32 058503
[5] Zhang Y D, Chu C S, Hang S, Zhang Y H, Zheng Q, Li Q, BiWG and Zhang Z H 2023 Chin. Phys. B 32 018509
[6] Wu Y F, Gritters J, Shen L, Smith R P, Mckay J and Barr R 2013 The 1st IEEEWorkshop onWide Bandgap Power Devices and Applications, October 27–29, 2013 Columbus, OH, USA, p. 6
[7] Huang S, Liu X Y, Wang X H, et al. 2016 IEEE Electron Device Lett. 37 1617
[8] Kim Y S, Lim J Y, Seok O G and Han M K 2011 IEEE 23rd International Symposium on Power Semiconductor Devices and ICs, May 23–26, 2011 San Diego, CA, USA, p. 251
[9] He Y L, Zhang F, Liu K, Hong Y H, Zheng X F, Wang C, Ma X H and Hao Y 2022 Chin. Phys. B 31 068501
[10] Meneghini M, Rossetto I, Rizzato V, et al. 2016 Electronics 5 14
[11] Sayadi L, Iannaccone G, Sicre S, Häberlen O and Curatola G 2018 IEEE Trans. Electron Devices 65 2454
[12] Fu K, Qi X, Fu H Q, Su P Y, Yang T H, Yang C, Montes J, Zhou J G, Ponce F A and Zhao Y J 2021 Semicond. Sci. Technol. 36 014005
[13] Tallarico A N, Stoffels S, Magnone P, Posthuma N, Sangiorgi E, Decoutere S and Fiegna C 2017 IEEE Electron Device Lett. 38 99
[14] Tapajna M, Hilt O, Bahat T E,Wuerfl J and Kuzmik J 2015 Appl. Phys. Lett. 107 193506
[15] Chen J T, Hua M Y, Wei J, He J B, Wang C C, Zheng Z Y and Chen K J 2021 IEEE J. Emerg. Sel. Top. Power Electron. 9 3686
[16] Ionita C and Nawaz M 2017 IEEE International Reliability Physics Symposium, April 02–06, 2017 Monterey, CA, USA, p. WB-1.1
[17] Li S J, He Z Y, Gao R, Chen Y Q and Li C 2021 IEEE Trans. Electron Devices 68 443
[18] Chao X, Tang C K,Wang C, Tan J J, Ji L, Chen L, Zhu H, Sun Q Q and Zhang D W 2022 IEEE Trans. Electron Devices 69 6587
[19] Chen J T, Hua M Y, Wei J, He J B, Wang C C, Zheng Z Y and Chen K J 2021 IEEE J. Emerg. Sel. Topics Power Electron. 9 3686
[20] Li X, Feng S W, Liu C, Zhang Y M, Bai K, Xiao Y X, Zheng X, He X, Pan S J, Lin G and Bai L 2020 IEEE Trans. Electron Devices 67 5454
[21] Wang Y Z, Wang M S, Hua N, Chen K, He Z M, Zheng X F, Li P X, Ma X H, Guo L X and Hao Y 2022 Chin. Phys. B 31 068101
[22] Tang C Y, Fu C, Jiang Y, et al. 2023 Appl. Phys. Lett. 123 092104
[23] Das P, Halder N N, Kumar R, Jana S K, Kabi S, Borisov B, Dabiran A, Chow P and Biswas D 2014 Electron Mater. Lett. 10 1087
[24] Gupta S, Simoen E, Vrielinck H, Merckling C, Vincent B, Gencarelli F, Loo R and Heyns M 2013 ECS Trans. 53 251
[25] Meneghini M, Grassa M L, Vaccari S, et al. 2014 Appl. Phys. Lett. 114 113505
[26] Venturi G, Castaldini A, Cavallini A, Meneghini M, Zanoni E, Zhu D D and Humphreys C 2014 Appl. Phys. Lett. 104 211102
[27] Zheng X Y, Li H Y, Ning Y B, Pan C B, Wang K and Zhao L X 2024 IEEE Trans. Electron Devices 71 6958
[28] Cho H K, Kim C S and Hong C H 2003 J. Appl. Phys. 94 1458
[29] Al-Mamun N S, Islam A, Glavin N, Haque A, Wolfe D E, Ren F and Pearton S 2024 Microelectron Reliab. 160 115470
[30] Romanitan C, Mihalache I, Tutunaru O and Pachiu C 2020 J. Alloys Compd. 858 157723
[31] Tang D S and Cao B Y 2022 Int. J. Heat Mass Transf. 200 123497
[32] Tang D S, Qin G Z, HuMand Cao B Y 2020 J. Appl. Phys. 127 035102
[33] Feng T L and Ruan X L 2014 Journal of Nanomaterials 2014 206370
[34] Chatteriee B, Dundar C, Beechem T E, Heller E, Kendig D, Kim H, Donmezer N and Choi S 2020 J. Appl. Phys. 127 044502
[35] Hui C X, Chen Q Q, Shi Y J, He Z Y, Huang Y, Lu X J, Wang H Y, Jiang J and Lu G G 2022 Micromachines 13 2101
[36] Martinez R P, Iwamoto M, Xu J J, et al. 2024 IEEE T. Microw. Theory. 72 2692
[37] Quay R 2008 Gallium Nitride electronics (Berlin: Springer-Verlag) pp. 20–25
[38] Bremer J, Chen D Y, Malko A, et al. 2020 IEEE Trans. Electron Devices 67 1952
[39] Tang D S, Hua Y C, Zhou Y G and Cao B Y 2021 Acta Phys. Sin. 70 045101 (in Chinese)
[40] Li H, Hanus R, Polanco C A, Zeidler A, Koblmuller G, Koh Y K and Lindsay L 2020 Phys. Rev. B 102 104313
[41] Yang J H, Sun Y D, and Xu B 2025 Phys. Rev. B 111 104112
[1] Site occupation of Al doping in Lu2SiO5: The role of ionic radius versus chemical valence
Xuejiao Sun(孙雪娇), Yu Cui(崔宇), Feng Gao(高峰), Zhongjun Xue(薛中军), Shuwen Zhao(赵书文), Dongzhou Ding(丁栋舟), Fan Yang(杨帆), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2025, 34(9): 096101.
[2] Improved ferroelectricity in Mn-doped HfO2 (111) epitaxial thin films through controlled doping and substrate orientation
Jiayi Gu(顾嘉仪), Haiyi Zhang(张海义), Weijin Pan(潘炜进), Haifeng Bu(卜海峰), Zhijian Shen(沈志健), Shengchun Shen(沈胜春), Yuewei Yin(殷月伟), and Xiaoguang Li(李晓光). Chin. Phys. B, 2025, 34(8): 087701.
[3] Characterization of antisite defects and in-gap states in antiferromagnetic MnSb2Te4
Junming Zhang(张峻铭), Ming Xi(席明), Yuchong Zhang(张羽翀), Hang Li(李航), Jiali Zhao(赵佳丽), Hechang Lei(雷和畅), Zhongxu Wei(魏忠旭), and Tian Qian(钱天). Chin. Phys. B, 2025, 34(7): 076801.
[4] Non-negligible influence of vacancies and interlayer coupling on electronic properties of heavy ion irradiated SnSe2 FETs
Shifan Gao(高诗凡), Siyuan Ma(马思远), Shengxia Zhang(张胜霞), Pengliang Zhu(朱彭靓), Jie Liu(刘杰), Lijun Xu(徐丽君), Pengfei Zhai(翟鹏飞), Peipei Hu(胡培培), and Yan Li(李燕). Chin. Phys. B, 2025, 34(4): 046106.
[5] Lamb wave TDTE super-resolution imaging assisted by deep learning
Liu-Jia Sun(孙刘家), Qing-Bang Han(韩庆邦), and Qi-Lin Jin(靳琪琳). Chin. Phys. B, 2025, 34(1): 014301.
[6] Calculation and prediction of divertor detachment via impurity seeding by using one-dimensional model
Wen-Jie Zhou(周文杰), Xiao-Ju Liu(刘晓菊), Xiao-He Wu(邬潇河), Bang Li(李邦), Qi-Qi Shi(石奇奇), Hao-Chen Fan(樊皓尘), Yan-Jie Yang(杨艳杰), and Guo-Qiang Li(李国强). Chin. Phys. B, 2024, 33(8): 085205.
[7] Properties of radiation defects and threshold energy of displacement in zirconium hydride obtained by new deep-learning potential
Xi Wang(王玺), Meng Tang(唐孟), Ming-Xuan Jiang(蒋明璇), Yang-Chun Chen(陈阳春), Zhi-Xiao Liu(刘智骁), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2024, 33(7): 076103.
[8] RKKY interaction in helical higher-order topological insulators
Sha Jin(金莎), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2024, 33(7): 077503.
[9] Relationship between disorder, magnetism and band topology in Mn(Sb1-xBix)2Te4 single crystals
Ming Xi(席明) and Hechang Lei(雷和畅). Chin. Phys. B, 2024, 33(6): 067503.
[10] Prediction of impurity spectrum function by deep learning algorithm
Ting Liu(刘婷), Rong-Sheng Han(韩榕生), and Liang Chen(陈亮). Chin. Phys. B, 2024, 33(5): 057102.
[11] Effects of vacancy and external electric field on the electronic properties of the MoSi2N4/graphene heterostructure
Qian Liang(梁前), Xiangyan Luo(罗祥燕), Guolin Qian(钱国林), Yuanfan Wang(王远帆), Yongchao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2024, 33(3): 037101.
[12] Correlation of microstructure and magnetic softness of Si-microalloying FeNiBCuSi nanocrystalline alloy revealed by nanoindentation
Benjun Wang(汪本军), Wenjun Liu(刘文君), Li Liu(刘莉), Yu Wang(王玉), Yu Hang(杭宇), Xinyu Wang(王新宇), Mengen Shi(施蒙恩), Hanchen Feng(冯汉臣), Long Hou(侯龙), Chenchen Yuan(袁晨晨), Zhong Li(李忠), and Weihuo Li(李维火). Chin. Phys. B, 2024, 33(12): 126101.
[13] Physics through the microscope
Stephen J. Pennycook, Ryo Ishikawa, Haijun Wu(武海军), Xiaoxu Zhao(赵晓续), Changjian Li(黎长建), Duane Loh, Jiadong Dan, and Wu Zhou(周武). Chin. Phys. B, 2024, 33(11): 116801.
[14] Effect of grain size on gas bubble evolution in nuclear fuel: Phase-field investigations
Dan Sun(孙丹), Qingfeng Yang(杨青峰), Jiajun Zhao(赵家珺), Shixin Gao(高士鑫), Yong Xin(辛勇), Yi Zhou(周毅), Chunyu Yin(尹春雨), Ping Chen(陈平), Jijun Zhao(赵纪军), and Yuanyuan Wang(王园园). Chin. Phys. B, 2024, 33(1): 016105.
[15] Ga intercalation in van der Waals layers for advancing p-type Bi2Te3-based thermoelectrics
Yiyuan Chen(陈艺源), Qing Shi(石青), Yan Zhong(钟艳), Ruiheng Li(李瑞恒), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(6): 067201.
No Suggested Reading articles found!