| INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
|
|
|
Degradation mechanisms of Schottky p-GaN gate AlGaN/GaN HEMTs under high-temperature reverse bias stress |
| Fei Hu(胡飞), Chengbing Pan(潘成兵)†, Xinyuan Zheng(郑鑫源), Yibo Ning(宁一博), Xueyan Li(李雪燕), and Lixia Zhao(赵丽霞)‡ |
| Tianjin Key Laboratory of Intelligent Control of Electrical Equipment, School of Electrical Engineering, Tiangong University, Tianjin 300387, China |
|
|
|
|
Abstract The degradation mechanisms of Schottky p-GaN gate AlGaN/GaN HEMTs under high-temperature reverse bias (HTRB) stress were investigated and the evolution of the deep traps was identified using deep-level transient spectroscopy. The saturation current of p-GaN gate AlGaN/GaN HEMTs decreased by 18.2% and the threshold voltage shifted positively by 11.6% after the degradation. An electron trap (at 369 K) and a hole trap (at 95 K) were observed in the AlGaN/GaN region, while another hole trap (at 359 K) was found in the p-GaN layer before the stress. Meanwhile, after the stress, the concentration and capture cross section of the hole traps increased in both the p-GaN layer and the AlGaN/GaN region. With regard to the electron trap in the AlGaN/GaN region, the capture cross section increased significantly but the electron trap concentration slightly decreased, which may increase the electron trapping, thereby reducing electrons in the two-dimensional electron gas. These factors result in a positive shift in the threshold voltage and a decrease in the output current. This work provides a new insight into understanding the threshold voltage instability of Schottky p-GaN gate AlGaN/GaN HEMTs.
|
Received: 05 February 2025
Revised: 04 June 2025
Accepted manuscript online: 06 June 2025
|
|
PACS:
|
85.30.-z
|
(Semiconductor devices)
|
| |
73.61.Ey
|
(III-V semiconductors)
|
| |
71.55.-i
|
(Impurity and defect levels)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12374395) and the Chinese Institute of Electronics (CIE)-SmartChip Research Project. |
Corresponding Authors:
Chengbing Pan, Lixia Zhao
E-mail: cbpan@tiangong.edu.cn;lxzhao@tiangong.edu.cn
|
Cite this article:
Fei Hu(胡飞), Chengbing Pan(潘成兵), Xinyuan Zheng(郑鑫源), Yibo Ning(宁一博), Xueyan Li(李雪燕), and Lixia Zhao(赵丽霞) Degradation mechanisms of Schottky p-GaN gate AlGaN/GaN HEMTs under high-temperature reverse bias stress 2025 Chin. Phys. B 34 118501
|
[1] Chen L X, Ma M, Cao J C, Sun JW, Que M L and Sun Y F 2021 Chin. Phys. B 30 108502 [2] Jiang X, Li C H, Yang S X, Liang J H, Lai L K, Dong Q Y, Huang W, Liu X Y and Luo W J 2023 Chin. Phys. B 32 037201 [3] Zhao S L, Mi M H, Hou B, Luo J, Wang Y, Dai Y, Zhang J C, Ma X H and Hao Y 2014 Chin. Phys. B 23 107303 [4] Cao Y W, Lv Q J, Yang T P, Mi T T, Wang X W, Liu W and Liu J L 2023 Chin. Phys. B 32 058503 [5] Zhang Y D, Chu C S, Hang S, Zhang Y H, Zheng Q, Li Q, BiWG and Zhang Z H 2023 Chin. Phys. B 32 018509 [6] Wu Y F, Gritters J, Shen L, Smith R P, Mckay J and Barr R 2013 The 1st IEEEWorkshop onWide Bandgap Power Devices and Applications, October 27–29, 2013 Columbus, OH, USA, p. 6 [7] Huang S, Liu X Y, Wang X H, et al. 2016 IEEE Electron Device Lett. 37 1617 [8] Kim Y S, Lim J Y, Seok O G and Han M K 2011 IEEE 23rd International Symposium on Power Semiconductor Devices and ICs, May 23–26, 2011 San Diego, CA, USA, p. 251 [9] He Y L, Zhang F, Liu K, Hong Y H, Zheng X F, Wang C, Ma X H and Hao Y 2022 Chin. Phys. B 31 068501 [10] Meneghini M, Rossetto I, Rizzato V, et al. 2016 Electronics 5 14 [11] Sayadi L, Iannaccone G, Sicre S, Häberlen O and Curatola G 2018 IEEE Trans. Electron Devices 65 2454 [12] Fu K, Qi X, Fu H Q, Su P Y, Yang T H, Yang C, Montes J, Zhou J G, Ponce F A and Zhao Y J 2021 Semicond. Sci. Technol. 36 014005 [13] Tallarico A N, Stoffels S, Magnone P, Posthuma N, Sangiorgi E, Decoutere S and Fiegna C 2017 IEEE Electron Device Lett. 38 99 [14] Tapajna M, Hilt O, Bahat T E,Wuerfl J and Kuzmik J 2015 Appl. Phys. Lett. 107 193506 [15] Chen J T, Hua M Y, Wei J, He J B, Wang C C, Zheng Z Y and Chen K J 2021 IEEE J. Emerg. Sel. Top. Power Electron. 9 3686 [16] Ionita C and Nawaz M 2017 IEEE International Reliability Physics Symposium, April 02–06, 2017 Monterey, CA, USA, p. WB-1.1 [17] Li S J, He Z Y, Gao R, Chen Y Q and Li C 2021 IEEE Trans. Electron Devices 68 443 [18] Chao X, Tang C K,Wang C, Tan J J, Ji L, Chen L, Zhu H, Sun Q Q and Zhang D W 2022 IEEE Trans. Electron Devices 69 6587 [19] Chen J T, Hua M Y, Wei J, He J B, Wang C C, Zheng Z Y and Chen K J 2021 IEEE J. Emerg. Sel. Topics Power Electron. 9 3686 [20] Li X, Feng S W, Liu C, Zhang Y M, Bai K, Xiao Y X, Zheng X, He X, Pan S J, Lin G and Bai L 2020 IEEE Trans. Electron Devices 67 5454 [21] Wang Y Z, Wang M S, Hua N, Chen K, He Z M, Zheng X F, Li P X, Ma X H, Guo L X and Hao Y 2022 Chin. Phys. B 31 068101 [22] Tang C Y, Fu C, Jiang Y, et al. 2023 Appl. Phys. Lett. 123 092104 [23] Das P, Halder N N, Kumar R, Jana S K, Kabi S, Borisov B, Dabiran A, Chow P and Biswas D 2014 Electron Mater. Lett. 10 1087 [24] Gupta S, Simoen E, Vrielinck H, Merckling C, Vincent B, Gencarelli F, Loo R and Heyns M 2013 ECS Trans. 53 251 [25] Meneghini M, Grassa M L, Vaccari S, et al. 2014 Appl. Phys. Lett. 114 113505 [26] Venturi G, Castaldini A, Cavallini A, Meneghini M, Zanoni E, Zhu D D and Humphreys C 2014 Appl. Phys. Lett. 104 211102 [27] Zheng X Y, Li H Y, Ning Y B, Pan C B, Wang K and Zhao L X 2024 IEEE Trans. Electron Devices 71 6958 [28] Cho H K, Kim C S and Hong C H 2003 J. Appl. Phys. 94 1458 [29] Al-Mamun N S, Islam A, Glavin N, Haque A, Wolfe D E, Ren F and Pearton S 2024 Microelectron Reliab. 160 115470 [30] Romanitan C, Mihalache I, Tutunaru O and Pachiu C 2020 J. Alloys Compd. 858 157723 [31] Tang D S and Cao B Y 2022 Int. J. Heat Mass Transf. 200 123497 [32] Tang D S, Qin G Z, HuMand Cao B Y 2020 J. Appl. Phys. 127 035102 [33] Feng T L and Ruan X L 2014 Journal of Nanomaterials 2014 206370 [34] Chatteriee B, Dundar C, Beechem T E, Heller E, Kendig D, Kim H, Donmezer N and Choi S 2020 J. Appl. Phys. 127 044502 [35] Hui C X, Chen Q Q, Shi Y J, He Z Y, Huang Y, Lu X J, Wang H Y, Jiang J and Lu G G 2022 Micromachines 13 2101 [36] Martinez R P, Iwamoto M, Xu J J, et al. 2024 IEEE T. Microw. Theory. 72 2692 [37] Quay R 2008 Gallium Nitride electronics (Berlin: Springer-Verlag) pp. 20–25 [38] Bremer J, Chen D Y, Malko A, et al. 2020 IEEE Trans. Electron Devices 67 1952 [39] Tang D S, Hua Y C, Zhou Y G and Cao B Y 2021 Acta Phys. Sin. 70 045101 (in Chinese) [40] Li H, Hanus R, Polanco C A, Zeidler A, Koblmuller G, Koh Y K and Lindsay L 2020 Phys. Rev. B 102 104313 [41] Yang J H, Sun Y D, and Xu B 2025 Phys. Rev. B 111 104112 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|