Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 128102    DOI: 10.1088/1674-1056/ad8624
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effects of TMIn flow rate during quantum barrier growth on multi-quantum well material properties and device performance of GaN-based laser diodes

Zhenyu Chen(陈振宇)1,2, Degang Zhao(赵德刚)1,3,†, Feng Liang(梁锋)1,‡, Zongshun Liu(刘宗顺)1, Jing Yang(杨静)1, and Ping Chen(陈平)1
1 State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Multidimensional influences of indium composition in barrier layers on GaN-based blue laser diodes (LDs) are discussed from both material quality and device physics perspectives. LDs with higher indium content in the barriers demonstrate a notably lower threshold current and shorter lasing wavelength compared to those with lower indium content. Our experiments reveal that higher indium content in the barrier layers can partially reduce indium composition in the quantum wells, a novel discovery. Employing higher indium content barrier layers leads to improved luminescence properties of the MQW region. Detailed analysis reveals that this improvement can be attributed to better homogeneity in the indium composition of the well layers along the epitaxy direction. InGaN barrier layers suppress the lattice mismatch between barrier and well layers, thus mitigating the indium content pulling effect in the well layers. In supplement to experimental analysis, theoretical computations are performed, showing that InGaN barrier structures can effectively enhance carrier recombination efficiency and optical confinement of LD structure, thus improving the output efficiency of GaN-based blue LDs. Combining these theoretical insights with our experimental data, we propose that higher indium content barriers effectively enhance carrier recombination efficiency and indium content homogeneity in quantum well layers, thereby improving the output performance of GaN-based blue LDs.
Keywords:  laser diodes      MOCVD      quantum wells      III-V semiconductors  
Received:  23 August 2024      Revised:  30 September 2024      Accepted manuscript online:  12 October 2024
PACS:  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  78.67.De (Quantum wells)  
  42.55.Px (Semiconductor lasers; laser diodes)  
  81.05.Ea (III-V semiconductors)  
Fund: Project supported by Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2023124), the National Key Research and Development Program of China (Grant No. 2022YFB3608100), Key Research and Development Program of Jiangsu Province (Grant No. BE2021008-1), Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering (Grant No. 2022SXTD016), the National Natural Science Foundation of China (Grant Nos. 62274157, 61904172, 62127807, 62234011, 61974162, 62034008, 62074142, 62074140, and 62250038), and Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB43030101).
Corresponding Authors:  Degang Zhao, Feng Liang     E-mail:  dgzhao@semi.ac.cn;liangfeng13@semi.ac.cn

Cite this article: 

Zhenyu Chen(陈振宇), Degang Zhao(赵德刚), Feng Liang(梁锋), Zongshun Liu(刘宗顺), Jing Yang(杨静), and Ping Chen(陈平) Effects of TMIn flow rate during quantum barrier growth on multi-quantum well material properties and device performance of GaN-based laser diodes 2024 Chin. Phys. B 33 128102

[1] Nakatsu Y, Nagao Y, Hirao T, Hara Y, Masui S, Yanamoto T, Nagahama S I, Morkoç H, Fujioka H and Schwarz U T 2020 Gallium Nitride Materials and Devices XV 2020
[2] Yang J, Zhao D, Liu Z, Liang F, Chen P, Duan L, Wang H and Shi Y 2022 J. Semiconduct. 43 010501
[3] Liang F, Zhao D, Liu Z, Chen P, Yang J, Duan L, Shi Y and Wang H 2021 J. Semiconduct. 42 112801
[4] Li Z, Liu J, Feng M, Zhou K, Zhang S, Wang H, Li D, Zhang L, Zhao D, Jiang D, Wang H and Yang H 2013 Appl. Phys. Lett. 103 152109
[5] Zhi T, Tao T, Liu X, Xue J, Wang J, Tao Z, Li Y, Xie Z and Liu B 2021 J. Semiconduct. 42 122803
[6] Chyi J I, Nanishi Y, Morkoç H, Piprek J, Yoon E, Fujioka H, Strauß U, Hager T, Brüderl G, Wurm T, Somers A, Eichler C, Vierheilig C, Löffler A, Ristic J and Avramescu A 2014 Gallium Nitride Materials and Devices IX 2014
[7] Murayama M, Nakayama Y, Yamazaki K, Hoshina Y, Watanabe H, Fuutagawa N, Kawanishi H, Uemura T and Narui H 2017 Phys. Status Solidi (a) 215 1700513
[8] Cheng L, Zhang J, Wang J, Zhang J, Yang J, Wu S, Qian Q and Chen H 2021 J. Appl. Phys. 130 183104
[9] Alam S, Sundaram S, Li X, Jamroz M E, El Gmili Y, Robin I C, Voss P L, Salvestrini J P and Ougazzaden A 2017 Phys. Status Solidi (a) 214 1600868
[10] Park S H 2015 J. Korean Phys. Soc. 66 277
[11] Park S H, Moon Y T, Lee J S, Kwon H K, Park J S and Ahn D 2010 Appl. Phys. Lett. 97 121107
[12] Park S H, Chung T H, Baek J H and Ahn D 2015 Jpn. J. Appl. Phys. 54 022101
[13] Fu H, Sun W, Ogidi-Ekoko O, Goodrich J C and Tansu N 2019 AIP Adv. 9 045013
[14] Kuo Y K, Chang J Y, Tsai M C and Yen S H 2009 Appl. Phys. Lett. 95 011116
[15] Wang T C, Ko T S, Lu T C, Kuo H C, Gao R C, Tsay J D and Wang S C 2008 Phys. Status Solidi c 5 2161
[16] Streubel K P, Wang T H, Jeon H, Chang J Y, Tsai M C, Tu L W, Linder N and Kuo Y K 2011 Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting XV 2011
[17] Yang Y and Zeng Y 2015 J. Appl. Phys. 117 035705
[18] Noh Y K, Kim M D and Oh J E 2011 J. Appl. Phys. 110
[19] Chung H Y, Woo K Y, Kim S J and Kim T G 2014 Opt. Commun. 331 282
[20] Wang W J, Liao M L, Yuan J, Luo S Y and Huang F 2022 Chin. Phys. B 31 074206
[21] Ben Y, Liang F, Zhao D, Yang J, Liu Z and Chen P 2022 Opt. Laser Technol. 145 107523
[22] Mahala P, Behura S K, Ray A, Dhanavantri C and Jani O 2015 Opt. Quant. Electron. 47 1117
[23] Laws G, Larkins E, Harrison I, Molloy C and Somerford D 2001 J. Appl. Phys. 89 1108
[24] Lu D and Duan S 2000 Chin. J. Semiconduct. 21 105
[25] Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W and Hilsenbeck J 1999 J. Appl. Phys. 85 3222
[26] Takeuchi T, Wetzel C, Yamaguchi S, Sakai H, Amano H, Akasaki I, Kaneko Y, Nakagawa S, Yamaoka Y and Yamada N 1998 Appl. Phys. Lett. 73 1691
[27] Vurgaftman I, Meyer J R and Ram Mohan L R 2001 J. Appl. Phys. 89 5815
[28] Mccluskey M, Van De Walle C, Master C, Romano L and Johnson N 1998 Appl. Phys. Lett. 72 2725
[29] Cho Y H, Gainer G H, Fischer A J, Song J J, Keller S, Mishra U K and Denbaars S P 1998 Appl. Phys. Lett. 73 1370
[30] Manoogian A and Woolley J C 1984 Can. J. Phys. 62 285
[31] Danhof J, Vierheilig C, Schwarz U T, Meyer T, Peter M and Hahn B 2011 Phys. Status Solidi (b) 248 1270
[32] Wang X and Xu S 2022 Chin. Phys. Lett. 39 107801
[33] Langer T, Pietscher H G, Ketzer F A, Jönen H, Bremers H, Rossow U, Menzel D and Hangleiter A 2014 Phys. Rev. B 90 205302
[34] Hao M, Ishikawa H, Egawa T, Shao C L and Jimbo T 2003 Appl. Phys. Lett. 82 4702
[35] Ben Y, Liang F, Zhao D, Yang J, Chen P and Liu Z 2022 J. Mater. Res. Technol. 21 2228
[36] Eliseev P G, Perlin P, Lee J Y and Osinski M 1997 Appl. Phys. Lett. 71 569
[37] Bai J, Wang T and Sakai S 2000 J. Appl. Phys. 88 4729
[38] Hiramatsu K, Kawaguchi Y, Shimizu M, Sawaki N, Zheleva T, Davis R F, Tsuda H, Taki W, Kuwano N and Oki K 1997 Mrs Internet Journal of Nitride Semiconductor Research 2 U3
[39] Pereira S, Correia M R, Pereira E, O’donnell K P, Trager-Cowan C, Sweeney F and Alves E 2001 Phys. Rev. B 64 205311
[40] Inatomi Y, Kangawa Y, Ito T, Suski T, Kumagai Y, Kakimoto K and Koukitu A 2017 Jpn. J. Appl. Phys. 56 078003
[41] Chen Z, Liang F, Zhao D, Yang J and Liu Z 2024 J. Alloys Compd. 983 173909
[42] Chen Z, Liang F, Zhao D, Yang J, Chen P and Jiang D 2022 Nanomaterials 12 2581
[1] Quantum confinement of carriers in the type-I quantum wells structure
Xinxin Li(李欣欣), Zhen Deng(邓震), Yang Jiang(江洋), Chunhua Du(杜春花), Haiqiang Jia(贾海强), Wenxin Wang(王文新), and Hong Chen(陈弘). Chin. Phys. B, 2024, 33(9): 097301.
[2] Reanalysis of energy band structure in the type-II quantum wells
Xinxin Li(李欣欣), Zhen Deng(邓震), Yang Jiang(江洋), Chunhua Du(杜春花), Haiqiang Jia(贾海强), Wenxin Wang(王文新), and Hong Chen(陈弘). Chin. Phys. B, 2024, 33(6): 067302.
[3] Nanoscale cathodoluminescence spectroscopy probing the nitride quantum wells in an electron microscope
Zhetong Liu(刘哲彤), Bingyao Liu(刘秉尧), Dongdong Liang(梁冬冬), Xiaomei Li(李晓梅), Xiaomin Li(李晓敏), Li Chen(陈莉), Rui Zhu(朱瑞), Jun Xu(徐军), Tongbo Wei(魏同波), Xuedong Bai(白雪冬), and Peng Gao(高鹏). Chin. Phys. B, 2024, 33(3): 038502.
[4] Relation of V/III ratio of AlN interlayer with the polarity of nitride
Zhaole Su(苏兆乐), Yangfeng Li(李阳锋), Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhen Deng(邓震), Ziguang Ma(马紫光), Chunhua Du(杜春花), Wenxin Wang(王文新), Haiqiang Jia(贾海强), Yang Jiang(江洋), and Hong Chen(陈弘). Chin. Phys. B, 2024, 33(11): 117801.
[5] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), and Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[6] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[7] Lower bound on the spread of valley splitting in Si/SiGe quantum wells induced by atomic rearrangement at the interface
Gang Wang(王刚), Shan Guan(管闪), Zhi-Gang Song(宋志刚), and Jun-Wei Luo(骆军委). Chin. Phys. B, 2023, 32(10): 107309.
[8] Single-mode GaSb-based laterally coupled distributed-feedback laser for CO2 gas detection
Shi-Xian Han(韩实现), Jin-Yi Yan(严进一), Chun-Fang Cao(曹春芳), Jin Yang(杨锦), An-Tian Du(杜安天), Yuan-Yu Chen(陈元宇), Ruo-Tao Liu(刘若涛), Hai-Long Wang(王海龙), and Qian Gong(龚谦). Chin. Phys. B, 2023, 32(10): 104205.
[9] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[10] A 4×4 metal-semiconductor-metal rectangular deep-ultraviolet detector array of Ga2O3 photoconductor with high photo response
Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Mao-Lin Zhang(张茂林), Li-Li Yang(杨莉莉), Shan Li(李山), Zu-Yong Yan(晏祖勇), Shao-Hui Zhang(张少辉), Dao-You Guo(郭道友), Pei-Gang Li(李培刚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(8): 088503.
[11] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[12] Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers
Zhuang-Zhuang Zhao(赵壮壮), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中), Yun Sun(孙昀), Jing-Tao Zhou(周静涛), and De-Xin Wu(吴德馨). Chin. Phys. B, 2022, 31(3): 034208.
[13] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[14] Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer
Shang-Da Qu(屈尚达), Ming-Sheng Xu(徐明升), Cheng-Xin Wang(王成新), Kai-Ju Shi(时凯居), Rui Li(李睿), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2022, 31(1): 017801.
[15] High-responsivity solar-blind photodetector based on MOCVD-grown Si-doped β-Ga2O3 thin film
Yu-Song Zhi(支钰崧), Wei-Yu Jiang(江为宇), Zeng Liu(刘增), Yuan-Yuan Liu(刘媛媛), Xu-Long Chu(褚旭龙), Jia-Hang Liu(刘佳航), Shan Li(李山), Zu-Yong Yan(晏祖勇), Yue-Hui Wang(王月晖), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2021, 30(5): 057301.
No Suggested Reading articles found!