1 State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract Multidimensional influences of indium composition in barrier layers on GaN-based blue laser diodes (LDs) are discussed from both material quality and device physics perspectives. LDs with higher indium content in the barriers demonstrate a notably lower threshold current and shorter lasing wavelength compared to those with lower indium content. Our experiments reveal that higher indium content in the barrier layers can partially reduce indium composition in the quantum wells, a novel discovery. Employing higher indium content barrier layers leads to improved luminescence properties of the MQW region. Detailed analysis reveals that this improvement can be attributed to better homogeneity in the indium composition of the well layers along the epitaxy direction. InGaN barrier layers suppress the lattice mismatch between barrier and well layers, thus mitigating the indium content pulling effect in the well layers. In supplement to experimental analysis, theoretical computations are performed, showing that InGaN barrier structures can effectively enhance carrier recombination efficiency and optical confinement of LD structure, thus improving the output efficiency of GaN-based blue LDs. Combining these theoretical insights with our experimental data, we propose that higher indium content barriers effectively enhance carrier recombination efficiency and indium content homogeneity in quantum well layers, thereby improving the output performance of GaN-based blue LDs.
Fund: Project supported by Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2023124), the National Key Research and Development Program of China (Grant No. 2022YFB3608100), Key Research and Development Program of Jiangsu Province (Grant No. BE2021008-1), Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering (Grant No. 2022SXTD016), the National Natural Science Foundation of China (Grant Nos. 62274157, 61904172, 62127807, 62234011, 61974162, 62034008, 62074142, 62074140, and 62250038), and Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB43030101).
Zhenyu Chen(陈振宇), Degang Zhao(赵德刚), Feng Liang(梁锋), Zongshun Liu(刘宗顺), Jing Yang(杨静), and Ping Chen(陈平) Effects of TMIn flow rate during quantum barrier growth on multi-quantum well material properties and device performance of GaN-based laser diodes 2024 Chin. Phys. B 33 128102
[1] Nakatsu Y, Nagao Y, Hirao T, Hara Y, Masui S, Yanamoto T, Nagahama S I, Morkoç H, Fujioka H and Schwarz U T 2020 Gallium Nitride Materials and Devices XV 2020 [2] Yang J, Zhao D, Liu Z, Liang F, Chen P, Duan L, Wang H and Shi Y 2022 J. Semiconduct. 43 010501 [3] Liang F, Zhao D, Liu Z, Chen P, Yang J, Duan L, Shi Y and Wang H 2021 J. Semiconduct. 42 112801 [4] Li Z, Liu J, Feng M, Zhou K, Zhang S, Wang H, Li D, Zhang L, Zhao D, Jiang D, Wang H and Yang H 2013 Appl. Phys. Lett. 103 152109 [5] Zhi T, Tao T, Liu X, Xue J, Wang J, Tao Z, Li Y, Xie Z and Liu B 2021 J. Semiconduct. 42 122803 [6] Chyi J I, Nanishi Y, Morkoç H, Piprek J, Yoon E, Fujioka H, Strauß U, Hager T, Brüderl G, Wurm T, Somers A, Eichler C, Vierheilig C, Löffler A, Ristic J and Avramescu A 2014 Gallium Nitride Materials and Devices IX 2014 [7] Murayama M, Nakayama Y, Yamazaki K, Hoshina Y,Watanabe H, Fuutagawa N, Kawanishi H, Uemura T and Narui H 2017 Phys. Status Solidi (a) 215 1700513 [8] Cheng L, Zhang J, Wang J, Zhang J, Yang J, Wu S, Qian Q and Chen H 2021 J. Appl. Phys. 130 183104 [9] Alam S, Sundaram S, Li X, Jamroz M E, El Gmili Y, Robin I C, Voss P L, Salvestrini J P and Ougazzaden A 2017 Phys. Status Solidi (a) 214 1600868 [10] Park S H 2015 J. Korean Phys. Soc. 66 277 [11] Park S H, Moon Y T, Lee J S, Kwon H K, Park J S and Ahn D 2010 Appl. Phys. Lett. 97 121107 [12] Park S H, Chung T H, Baek J H and Ahn D 2015 Jpn. J. Appl. Phys. 54 022101 [13] Fu H, Sun W, Ogidi-Ekoko O, Goodrich J C and Tansu N 2019 AIP Adv. 9 045013 [14] Kuo Y K, Chang J Y, Tsai M C and Yen S H 2009 Appl. Phys. Lett. 95 011116 [15] Wang T C, Ko T S, Lu T C, Kuo H C, Gao R C, Tsay J D and Wang S C 2008 Phys. Status Solidi c 5 2161 [16] Streubel K P,Wang T H, Jeon H, Chang J Y, Tsai M C, Tu LW, Linder N and Kuo Y K 2011 Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting XV 2011 [17] Yang Y and Zeng Y 2015 J. Appl. Phys. 117 035705 [18] Noh Y K, Kim M D and Oh J E 2011 J. Appl. Phys. 110 [19] Chung H Y, Woo K Y, Kim S J and Kim T G 2014 Opt. Commun. 331 282 [20] Wang W J, Liao M L, Yuan J, Luo S Y and Huang F 2022 Chin. Phys. B 31 074206 [21] Ben Y, Liang F, Zhao D, Yang J, Liu Z and Chen P 2022 Opt. Laser Technol. 145 107523 [22] Mahala P, Behura S K, Ray A, Dhanavantri C and Jani O 2015 Opt. Quant. Electron. 47 1117 [23] Laws G, Larkins E, Harrison I, Molloy C and Somerford D 2001 J. Appl. Phys. 89 1108 [24] Lu D and Duan S 2000 Chin. J. Semiconduct. 21 105 [25] Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, SchaffWJ, Eastman L F, Dimitrov R,Wittmer L, Stutzmann M, Rieger W and Hilsenbeck J 1999 J. Appl. Phys. 85 3222 [26] Takeuchi T, Wetzel C, Yamaguchi S, Sakai H, Amano H, Akasaki I, Kaneko Y, Nakagawa S, Yamaoka Y and Yamada N 1998 Appl. Phys. Lett. 73 1691 [27] Vurgaftman I, Meyer J R and Ram Mohan L R 2001 J. Appl. Phys. 89 5815 [28] Mccluskey M, Van De Walle C, Master C, Romano L and Johnson N 1998 Appl. Phys. Lett. 72 2725 [29] Cho Y H, Gainer G H, Fischer A J, Song J J, Keller S, Mishra U K and Denbaars S P 1998 Appl. Phys. Lett. 73 1370 [30] Manoogian A and Woolley J C 1984 Can. J. Phys. 62 285 [31] Danhof J, Vierheilig C, Schwarz U T, Meyer T, Peter M and Hahn B 2011 Phys. Status Solidi (b) 248 1270 [32] Wang X and Xu S 2022 Chin. Phys. Lett. 39 107801 [33] Langer T, Pietscher H G, Ketzer F A, Jönen H, Bremers H, Rossow U, Menzel D and Hangleiter A 2014 Phys. Rev. B 90 205302 [34] Hao M, Ishikawa H, Egawa T, Shao C L and Jimbo T 2003 Appl. Phys. Lett. 82 4702 [35] Ben Y, Liang F, Zhao D, Yang J, Chen P and Liu Z 2022 J. Mater. Res. Technol. 21 2228 [36] Eliseev P G, Perlin P, Lee J Y and Osinski M 1997 Appl. Phys. Lett. 71 569 [37] Bai J, Wang T and Sakai S 2000 J. Appl. Phys. 88 4729 [38] Hiramatsu K, Kawaguchi Y, Shimizu M, Sawaki N, Zheleva T, Davis R F, Tsuda H, Taki W, Kuwano N and Oki K 1997 Mrs Internet Journal of Nitride Semiconductor Research 2 U3 [39] Pereira S, Correia M R, Pereira E, O’donnell K P, Trager-Cowan C, Sweeney F and Alves E 2001 Phys. Rev. B 64 205311 [40] Inatomi Y, Kangawa Y, Ito T, Suski T, Kumagai Y, Kakimoto K and Koukitu A 2017 Jpn. J. Appl. Phys. 56 078003 [41] Chen Z, Liang F, Zhao D, Yang J and Liu Z 2024 J. Alloys Compd. 983 173909 [42] Chen Z, Liang F, Zhao D, Yang J, Chen P and Jiang D 2022 Nanomaterials 12 2581
Relation of V/III ratio of AlN interlayer with the polarity of nitride Zhaole Su(苏兆乐), Yangfeng Li(李阳锋), Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhen Deng(邓震), Ziguang Ma(马紫光), Chunhua Du(杜春花), Wenxin Wang(王文新), Haiqiang Jia(贾海强), Yang Jiang(江洋), and Hong Chen(陈弘). Chin. Phys. B, 2024, 33(11): 117801.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.