Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 117201    DOI: 10.1088/1674-1056/adf9fc
RAPID COMMUNICATION Prev   Next  

Asymmetric gaps of tetralayer graphene unveiled by thermodynamic characterization

Zhuangzhuang Qu(曲壮壮)1,†, Zhuoxian Li(李卓贤)1,†, Boxi Li(李博熙)1,†, Lipeng Hou(侯立芃)2,†, Xianghan Han(韩香岩)1, Qianling Liu(刘倩伶)1, Zhiyu Wang(王知雨)1, Kenji Watanabe3, Takashi Taniguchi3, Yanmeng Shi(史衍猛)2,4,‡, and Jianming Lu(路建明)1,§
1 State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China;
2 State Key Laboratory of Semiconductor Physics and Chip Technologies, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
3 National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan;
4 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Tetralayer graphene has shown several interesting properties such as tunable Lifshitz transitions, helical edge states, and high-temperature anomalous Hall effects. The band structure, which directly relates to these phenomena, has so far been predominantly determined by fitting Landau-level spectra. Here, by characterizing the electronic capacitance, we reveal unprecedented details of its band structure: the energy shift between the heavy- and light-mass band edges in the conduction band is much larger than that in the valence band. Their responses to displacement fields are also distinct: while the former increases monotonically and significantly, the latter first decreases and then increases slightly. Our results suggest that the interlayer interactions and hopping parameters are more complex than previously expected, calling for precise measurements of band structures in various multilayer van der Waals systems.
Keywords:  quantum capacitance      band structure      Bernal tetralayer graphene      chemical potential  
Received:  11 June 2025      Revised:  21 July 2025      Accepted manuscript online:  11 August 2025
PACS:  72.80.Vp (Electronic transport in graphene)  
  84.37.+q (Measurements in electric variables (including voltage, current, resistance, capacitance, inductance, impedance, and admittance, etc.))  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 123B1037 and 12274402) and the National Key Research and Development Program of China (Grant No. 2024YFA1409700).
Corresponding Authors:  Yanmeng Shi, Jianming Lu     E-mail:  ymshi@semi.ac.cn;jmlu@lam.ln.cn

Cite this article: 

Zhuangzhuang Qu(曲壮壮), Zhuoxian Li(李卓贤), Boxi Li(李博熙), Lipeng Hou(侯立芃), Xianghan Han(韩香岩), Qianling Liu(刘倩伶), Zhiyu Wang(王知雨), Kenji Watanabe, Takashi Taniguchi, Yanmeng Shi(史衍猛), and Jianming Lu(路建明) Asymmetric gaps of tetralayer graphene unveiled by thermodynamic characterization 2025 Chin. Phys. B 34 117201

[1] Chen H, Arora A, Song J C W and Loh K P 2023 Nat. Commun. 14 7925
[2] Qu Z, Chen Z, Han X, Wang Z, Li Z, Liu Q, Zhao W, Watanabe K, Taniguchi T, Cheng Z G, Gan Z and Lu J 2025 Chin. Phys. B 34 037201
[3] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[4] Slonczewski J C and Weiss P R 1958 Phys. Rev. 109 272
[5] Wu Z, Han Y, Lin J, Zhu W, He M, Xu S, Chen X, Lu H, Ye W, Han T, Wu Y, Long G, Shen J, Huang R, Wang L, He Y, Cai Y, Lortz R, Su D and Wang N 2015 Phys. Rev. B 92 075408
[6] Koshino M and McCann E 2011 Phys. Rev. B 83 165443
[7] Grushina A L, Ki D K, Koshino M, Nicolet A A L, Faugeras C, McCann E, Potemski M and Morpurgo A F 2015 Nat. Commun. 6 6419
[8] Liang M, Li S and Gao J H 2022 Phys. Rev. B 105 045419
[9] Shi Y, Che S, Zhou K, Ge S, Pi Z, Espiritu T, Taniguchi T, Watanabe K, Barlas Y, Lake R and Lau C N 2018 Phys. Rev. Lett. 120 096802
[10] Che S, Shi Y, Yang J, Tian H, Chen R, Taniguchi T, Watanabe K, Smirnov D, Lau C N, Shimshoni E, Murthy G and Fertig H A 2020 Phys. Rev. Lett. 125 036803
[11] Bing D, Wang Y, Bai J, Du R, Wu G and Liu L 2018 Opt. Commun. 406 128
[12] Cong C, Yu T, Sato K, Shang J, Saito R, Dresselhaus G F and Dresselhaus M S 2011 ACS Nano 5 8760
[13] Han X, Liu Q, Wang Y, Niu R, Qu Z, Wang Z, Li Z, Han C, Watanabe K, Taniguchi T, Song Z, Mao J, Han Z V, Gan Z and Lu J 2023 Nano Lett. 23 6875
[14] Han X, Liu Q, Wang Y, Niu R, Qu Z, Wang Z, Li Z, Han C, Watanabe K, Taniguchi T, Song Z, Liu J, Mao J, Han Z, Chittari B L, Jung J, Gan Z and Lu J 2024 Nano Lett. 24 6286
[15] Han X, Zou Y, Liu Q, Wang Z, Niu R, Qu Z, Li Z, Han C, Watanabe K, Taniguchi T, Dong B, Song Z, Mao J, Han Z, Cheng Z G, Gan Z and Lu J 2024 Nat. Commun. 15 9765
[16] Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L and Dean C R 2013 Science 342 614
[17] Niu R, Han X, Qu Z, Wang Z, Li Z, Liu Q, Han C and Lu J 2023 Chin. Phys. B 32 017202
[18] Ding D, Niu R, Han X, Qu Z, Wang Z, Li Z, Liu Q, Han C and Lu J 2023 Chin. Phys. B 32 067204
[19] Ashoori R C, Stormer H L, Weiner J S, Pfeiffer L N, Pearton S J, Baldwin K W and West K W 1992 Phys. Rev. Lett. 68 3088
[20] Hazeghi A, Sulpizio J A, Diankov G, Goldhaber-Gordon D and Wong H S P 2011 Rev. Sci. Instrum. 82 053904
[21] Island J O, Cui X, Lewandowski C, Khoo J Y, Spanton E M, Zhou H, Rhodes D, Hone J C, Taniguchi T, Watanabe K, Levitov L S, Zaletel M P and Young A F 2019 Nature 571 85
[22] Aronson S H, Han T, Lu Z, Yao Y, Watanabe K, Taniguchi T, Ju L and Ashoori R C 2025 Phys. Rev. X 15 031026
[23] Dultz S C and Jiang H W 2000 Phys. Rev. Lett. 84 4689
[24] Avetisyan A A, Partoens B and Peeters F M 2009 Phys. Rev. B 80 195401
[1] Quantum oscillations and nontrivial topology in unfilled skutterudite IrSb3
Yang Yang(杨扬), Xinyao Li(李鑫垚), Feihong Guan(关飞鸿), Majeed Ur Rehman, Wei Ning(宁伟), Xiangde Zhu(朱相德), and Mingliang Tian(田明亮). Chin. Phys. B, 2025, 34(6): 067103.
[2] First principles prediction of the valley Hall effect in ScBrCl monolayer
Xiang Yu(于翔), Ping Li(李萍), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2025, 34(4): 047305.
[3] Anomalous Hall effect in Bernal tetralayer graphene enhanced by spin-orbit interaction
Zhuangzhuang Qu(曲壮壮), Zhihao Chen(陈志豪), Xiangyan Han(韩香岩), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Wenjun Zhao(赵文俊), Kenji Watanabe, Takashi Taniguchi, Zhi-Gang Cheng(程智刚), Zizhao Gan(甘子钊), and Jianming Lu(路建明). Chin. Phys. B, 2025, 34(3): 037201.
[4] Electronic structure, elasticity, magnetism of Mn2XIn(X =Fe, Co) full Heusler compounds under biaxial strain: First-principles calculations
Shiran Gao(皋世苒), Chengyang Zhao(赵成洋), Xinzhuo Zhang(张欣卓), Wen Qiao(乔文), Shiming Yan(颜士明), Ru Bai(白茹), and Tiejun Zhou(周铁军). Chin. Phys. B, 2025, 34(1): 017501.
[5] Experimental observation of Fermi-level flat band in novel kagome metal CeNi5
Xue-Zhi Chen(陈学智), Le Wang(王乐), Shuai Zhang(张帅), Ren-Jie Zhang(张任杰), Yi-Wei Cheng(程以伟), Yu-Dong Hu(胡裕栋), Cheng-Nuo Meng(孟承诺), Zheng-Tai Liu(刘正太), Bai-Qing Lv(吕佰晴), and Yao-Bo Huang(黄耀波). Chin. Phys. B, 2024, 33(8): 087402.
[6] Gate-field control of valley polarization in valleytronics
Ting-Ting Zhang(张婷婷), Yilin Han(韩依琳), Run-Wu Zhang(张闰午), and Zhi-Ming Yu(余智明). Chin. Phys. B, 2024, 33(6): 067303.
[7] Reanalysis of energy band structure in the type-II quantum wells
Xinxin Li(李欣欣), Zhen Deng(邓震), Yang Jiang(江洋), Chunhua Du(杜春花), Haiqiang Jia(贾海强), Wenxin Wang(王文新), and Hong Chen(陈弘). Chin. Phys. B, 2024, 33(6): 067302.
[8] Negative magnetoresistance in the antiferromagnetic semimetal V1/3TaS2
Zi Wang(王子), Xin Peng(彭馨), Shengnan Zhang(张胜男), Yahui Su(苏亚慧), Shaodong Lai(赖少东), Xuan Zhou(周旋), Chunxiang Wu(吴春翔), Tingyu Zhou(周霆宇), Hangdong Wang(王杭栋), Jinhu Yang(杨金虎), Bin Chen(陈斌), Huifei Zhai(翟会飞), Quansheng Wu(吴泉生), Jianhua Du(杜建华), Zhiwei Jiao(焦志伟), and Minghu Fang(方明虎). Chin. Phys. B, 2024, 33(3): 037301.
[9] Band structures of strained kagome lattices
Luting Xu(徐露婷) and Fan Yang(杨帆). Chin. Phys. B, 2024, 33(2): 027101.
[10] The de Haas-van Alphen quantum oscillations in the kagome metal RbTi3Bi5
Zixian Dong(董自仙), Lei Shi(石磊), Bin Wang(王彬), Mengwu Huo(霍梦五), Xing Huang(黄星), Chaoxin Huang(黄潮欣), Peiyue Ma(马培跃), Yunwei Zhang(张云蔚), Bing Shen(沈冰), and Meng Wang(王猛). Chin. Phys. B, 2024, 33(10): 107102.
[11] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[12] Goos-Hänchen and Imbert-Fedorov shifts in tilted Weyl semimetals
Shuo-Qing Liu(刘硕卿), Yi-Fei Song(宋益飞), Ting Wan(万婷), You-Gang Ke(柯友刚), and Zhao-Ming Luo(罗朝明). Chin. Phys. B, 2022, 31(7): 074101.
[13] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[14] Surface-induced orbital-selective band reconstruction in kagome superconductor CsV3Sb5
Linwei Huai(淮琳崴), Yang Luo(罗洋), Samuel M. L. Teicher, Brenden R. Ortiz, Kaize Wang(王铠泽),Shuting Peng(彭舒婷), Zhiyuan Wei(魏志远), Jianchang Shen(沈建昌), Bingqian Wang(王冰倩), Yu Miao(缪宇),Xiupeng Sun(孙秀鹏), Zhipeng Ou(欧志鹏), Stephen D. Wilson, and Junfeng He(何俊峰). Chin. Phys. B, 2022, 31(5): 057403.
[15] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
No Suggested Reading articles found!