|
|
|
Dynamical structure factor and a new method to measure the pairing gap in two-dimensional attractive Fermi–Hubbard model |
| Huaisong Zhao(赵怀松)1, Feng Yuan(袁峰)1,†, Tianxing Ma(马天星)2,‡, and Peng Zou(邹鹏)1,§ |
1 Centre for Theoretical and Computational Physics, College of Physics, Qingdao University, Qingdao 266071, China; 2 School of Physics and Astronomy, Beijing Normal University, Beijing 100875, China |
|
|
|
|
Abstract The measurement of the pairing gap is crucial for investigating the physical properties of superconductors or superfluids. We propose a strategy to measure the pairing gap through the dynamical excitations. With the random phase approximation (RPA), we study the dynamical excitations of a two-dimensional attractive Fermi–Hubbard model by calculating its dynamical structure factor. Two distinct collective modes emerge: a Goldstone phonon mode at transferred momentum q = [0,0] and a roton mode at q = [π,π]. The roton mode exhibits a sharp molecular peak in the low-energy regime. Notably, the area under the roton molecular peak scales with the square of the pairing gap, which holds even in three-dimensional and spin–orbit coupled (SOC) optical lattices. This finding suggests an experimental approach to measure the pairing gap in lattice systems by analyzing the dynamical structure factor at q = [π,π].
|
Received: 08 August 2025
Revised: 08 August 2025
Accepted manuscript online: 15 August 2025
|
|
PACS:
|
71.10.Fd
|
(Lattice fermion models (Hubbard model, etc.))
|
| |
03.75.Kk
|
(Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)
|
| |
67.85.-d
|
(Ultracold gases, trapped gases)
|
|
| Fund: This work was supported by the National Natural Science Foundation of China [Grant Nos. U23A2073 (P.Z.) and 11547034 (H.Z.)]. |
Corresponding Authors:
Feng Yuan, Tianxing Ma, Peng Zou
E-mail: yuan@qdu.edu.cn;txma@bnu.edu.cn;phy.zoupeng@gmail.com
|
Cite this article:
Huaisong Zhao(赵怀松), Feng Yuan(袁峰), Tianxing Ma(马天星), and Peng Zou(邹鹏) Dynamical structure factor and a new method to measure the pairing gap in two-dimensional attractive Fermi–Hubbard model 2025 Chin. Phys. B 34 117102
|
[1] Feld M, Fröhlich B, Vogt E, Koschorreck M and Köhl M 2011 Nature 480 75 [2] Stewart J T, Gaebler J P and Jin D S 2008 Nature 454 744 [3] Fröhlich B, Feld M, Vogt E, Koschorreck M, Zwerger W and Köhl M 2011 Phys. Rev. Lett. 106 105301 [4] Chin C, Bartenstein M, Altmeyer A, Riedl S, Jochim S, Denschlag J H and Grimm R 2004 Science 305 1128 [5] Sommer A T, Cheuk L W, Ku M J H, Bakr W S and Zwierlein M W 2012 Phys. Rev. Lett. 108 045302 [6] Zhai H 2015 Rep. Prog. Phys. 78 026001 [7] Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S and Zwierlein M W 2012 Phys. Rev. Lett. 109 095302 [8] Wang P, Yu Z Q, Fu Z, Miao J, Huang L, Chai S, Zhai H and Zhang J 2012 Phys. Rev. Lett. 109 095301 [9] Wang Z Y, Cheng X C, Wang B Z, Zhang J Y, Lu Y H, Yi C R, Niu S, Deng Y, Liu X J, Chen S and Pan J W 2021 Science 372 271 [10] Wu F, Guo G C, Zhang W and Yi W 2013 Phys. Rev. Lett. 110 110401 [11] Han R, Yuan F and Zhao H 2023 New J. Phys. 25 023011 [12] Veeravalli G, Kuhnle E, Dyke P and Vale C J 2008 Phys. Rev. Lett. 101 250403 [13] Hoinka S, Dyke P, Lingham M G, Kinnunen J J, Bruun G M and Vale C J 2017 Nat. Phys. 13 943 [14] Dyke P, Musolino S, Kurkjian H, Ahmed-Braun D J M, Pennings A, Herrera I, Hoinka S, Kokkelmans S J J M F, Colussi V E and Vale C J 2024 Phys. Rev. Lett. 132 223402 [15] Biss H, Sobirey L, Luick N, Bohlen M, Kinnunen J J, Bruun G M, Lompe T and Moritz H 2022 Phys. Rev. Lett. 128 100401 [16] Senaratne R, Cavazos-Cavazos D, Wang S, He F, Chang Y T, Kafle A, Pu H, Guan X W and Hulet R G 2022 Science 376 1305 [17] Li X, Luo X, Wang S, Xie K, Liu X P, Hu H, Chen Y A, Yao X C and Pan J W 2022 Science 375 528 [18] Pagano G, Mancini M, Cappellini G, Lombardi P, Schöfer F, Hu H, Liu X J, Catani J, Sias C, Inguscio M and Fallani L 2014 Nat. Phys. 10 198 [19] Combescot R, Giorgini S and Stringari S 2006 Europhys. Lett. 75 695 [20] Combescot R, KaganMY and Stringari S 2006 Phys. Rev. A 74 042717 [21] Zou P, Kuhnle E D, Vale C J and Hu H 2010 Phys. Rev. A 82 061605(R) [22] Zou P, Dalfovo F, Sharma R, Liu X J and Hu H 2016 New J. Phys. 18 113044 [23] Zou P, Hu H and Liu X J 2018 Phys. Rev. A 98 011602(R) [24] Hu H, Zou P, and Liu X J 2018 Phys. Rev. A 97 023615 [25] Zou P, Zhao H, He L, Liu X J and Hu H 2021 Phys. Rev. A 103 053310 [26] Kuhnle E D, Hu H, Liu X J, Dyke P, Mark M, Drummond P D, Hannaford P and Vale C J 2010 Phys. Rev. Lett. 105 070402 [27] Watabe S and Nikuni T 2010 Phys. Rev. A 82 033622 [28] Sobirey L, Biss H, Luick N, Bohlen M, Moritz H and Lompe T 2022 Phys. Rev. Lett. 129 083601 [29] Vitali E, Shi H, Qin M and Zhang S 2017 Phys. Rev. A 96 061601(R) [30] Zhao H, Gao X, Liang W, Zou P and Yuan F 2020 New J. Phys. 22 093012 [31] Gao Z, He L, Zhao H, Peng S G and Zou P 2023 Phys. Rev. A 107 013304 [32] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885 [33] Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J and Pan J W 2016 Science 354 83 [34] Greiner M, Mandel O, Esslinger T, Hänsch T W and Bloch I 2002 Nature 415 39 [35] Spielman I B, Phillips W D and Porto J V 2008 Phys. Rev. Lett. 100 120402 [36] Thomas C K, Barter T H, Leung T H, Okano M, Jo G B, Guzman J, Kimchi I, Vishwanath A and Stamper-Kurn D M 2017 Phys. Rev. Lett. 119 100402 [37] Jördens R, Strohmaier N, Günter K, Moritz H and Esslinger T 2008 Nature 455 204 [38] Schneider U, Hackermüller L, Will S, Best T, Bloch I, Costi T A, Helmes R W, Rasch D and Rosch A 2008 Science 322 1520 [39] Greif D, Uehlinger T, Jotzu G, Tarruell L and Esslinger T 2013 Science 340 1307 [40] Hart R A, Duarte P M, Yang T L, Liu X, Paiva T, Khatami E, Scalettar R T, Trivedi N, Huse D A and Hulet R G 2015 Nature 519 211 [41] Parsons M F, Mazurenko A, Chiu C S, Ji G, Greif D and Greiner M 2016 Science 353 1253 [42] Cheuk L W, Nichols M A, Lawrence K R, Okan M, Zhang H, Khatami E, Trivedi N, Paiva T, Rigol M and Zwierlein M W 2016 Science 353 1260 [43] Koepsell J, Bourgund D, Sompet P, Hirthe S, Bohrdt A,Wang Y, Grusdt F, Demler E, Salomon G, Gross C and Bloch I 2021 Science 374 82 [44] Boll M, Hilker T A, Salomon G, Omran A, Nespolo J, Pollet L, Bloch I and Gross C 2016 Science 353 1257 [45] Brown P T, Mitra D, Guardado-Sanchez E, Schauß P, Kondov S S, Khatami E, Paiva T, Trivedi N, Huse D A and Bakr W S 2017 Science 357 1385 [46] Arovas D P, Berg E, Kivelson S A and Raghu S 2022 Annual Review of Condensed Matter Physics 13 239 [47] Scalettar R T, Loh E Y, Gubernatis J E, Moreo A, White S R, Scalapino D J, Sugar R L and Dagotto E 1989 Phys. Rev. Lett. 62 1407 [48] Kyung B, Allen S and Tremblay A M S 2001 Phys. Rev. B 64 075116 [49] Honerkamp C and Hofstetter W 2004 Phys. Rev. Lett. 92 170403 [50] Mondaini R, Nikoliø’c P and Rigol M 2015 Phys. Rev. A 92 013601[51] Cocchi E, Miller L A, Drewes J H, Koschorreck M, Pertot D, Brennecke F and Köhl M 2016 Phys. Rev. Lett. 116 175301 [52] Strohmaier N, Takasu Y, Günter K, Jördens R, Köhl M, Moritz H and Esslinger T 2007 Phys. Rev. Lett. 99 220601 [53] Ho A F, Cazalilla M A and Giamarchi T 2009 Phys. Rev. A 79 033620 [54] Moreo A and Scalapino D J 2007 Phys. Rev. Lett. 98 216402 [55] Gukelberger J, Lienert S, Kozik E, Pollet L and Troyer M 2016 Phys. Rev. B 94 075157 [56] Paiva T, dos Santos R R, Scalettar R T and Denteneer P J H 2004 Phys. Rev. B 69 184501 [57] Shenoy V B 2008 Phys. Rev. B 78 134503 [58] Mitra D, Brown P T, Guardado-Sanchez E, Kondov S S, Devakul T, Huse D A, Schauß P and Bakr W S 2018 Nat. Phys. 14 173 [59] Brown P T, Guardado-Sanchez E, Spar B M, Huang EW, Devereaux T P and Bakr W S 2020 Nat. Phys. 16 26 [60] Hackermüller L, Schneider U, Moreno-Cardoner M, Kitagawa T, Best T, Will S, Demler E, Altman E, Bloch I and Paredes B 2010 Science 327 1621 [61] Gall M, Chan C F, Wurz N and Köhl M 2020 Phys. Rev. Lett. 124 010403 [62] Schneider U, Hackermüller L, Ronzheimer J P, Will S, Braun S, Best T, Bloch I, Demler E, Mandt S, Rasch D and Rosch A 2012 Nat. Phys. 8 213 [63] Hartke T, Oreg B, Turnbaugh C, Jia N and Zwierlein M 2023 Science 381 82 [64] Vitali E, Kelly P, Lopez A, Bertaina G and Galli D E 2020 Phys. Rev. A 102 053324 [65] Zhao H, Han R, Qin L, Yuan F and Zou P 2024 Phys. Rev. A 110 063326 [66] Liu X J, Hu H, Minguzzi A and Tosi M P 2004 Phys. Rev. A 69 043605 [67] He L 2016 Ann. Phys. 373 470 [68] Ganesh R, Paramekanti A and Burkov A A 2009 Phys. Rev. A 80 043612 [69] Han R, Yuan F and Zhao H 2022 Europhys. Lett. 139 25001 [70] Nocera A, Patel N D, Fernandez-Baca J, Dagotto E and Alvarez G 2016 Phys. Rev. B 94 205145 [71] Zhang S 1990 Phys. Rev. Lett. 65 120 [72] Qin M, Schäfer T, Andergassen S, Corboz P and Gull E 2022 Annual Review of Condensed Matter Physics 13 275 [73] Belkhir L and Randeria M 1994 Phys. Rev. B 49 6829 [74] Schäfer T,Wentzell N, Simkovic F, He Y Y, Hille C, Klett M, Eckhardt C J, Arzhang B, Harkov V, Le Régent F M, A. Kirsch, Wang Y, Kim A J, Kozik E, Stepanov E A, Kauch A, Andergassen S, Hansmann P, Rohe D, Vilk Y M, LeBlanc J P F, Zhang S, Tremblay A M S, Ferrero M, Parcollet O and Georges A 2021 Phys. Rev. X 11 011058 [75] Hafermann H, van Loon E G C P, Katsnelson M I, Lichtenstein A I and Parcollet O 2014 Phys. Rev. B 90 235105 [76] Feng S, Kuang L and Zhao H 2015 Physica C 517 5 [77] Anderson P W, Lee P A, Randeria M, Rice T M, Trivedi N and Zhang F C 2004 J. Phys.: Condens. Matter 16 R755 [78] Crameri F 2018 Geosci. Model Dev. 11 2541 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|