Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 117102    DOI: 10.1088/1674-1056/adfbd9
RAPID COMMUNICATION Prev   Next  

Dynamical structure factor and a new method to measure the pairing gap in two-dimensional attractive Fermi–Hubbard model

Huaisong Zhao(赵怀松)1, Feng Yuan(袁峰)1,†, Tianxing Ma(马天星)2,‡, and Peng Zou(邹鹏)1,§
1 Centre for Theoretical and Computational Physics, College of Physics, Qingdao University, Qingdao 266071, China;
2 School of Physics and Astronomy, Beijing Normal University, Beijing 100875, China
Abstract  The measurement of the pairing gap is crucial for investigating the physical properties of superconductors or superfluids. We propose a strategy to measure the pairing gap through the dynamical excitations. With the random phase approximation (RPA), we study the dynamical excitations of a two-dimensional attractive Fermi–Hubbard model by calculating its dynamical structure factor. Two distinct collective modes emerge: a Goldstone phonon mode at transferred momentum q = [0,0] and a roton mode at q = [π,π]. The roton mode exhibits a sharp molecular peak in the low-energy regime. Notably, the area under the roton molecular peak scales with the square of the pairing gap, which holds even in three-dimensional and spin–orbit coupled (SOC) optical lattices. This finding suggests an experimental approach to measure the pairing gap in lattice systems by analyzing the dynamical structure factor at q = [π,π].
Keywords:  attractive Fermi–Hubbard model      superfluid      dynamical excitations      roton mode      pairing gap measurement  
Received:  08 August 2025      Revised:  08 August 2025      Accepted manuscript online:  15 August 2025
PACS:  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  67.85.-d (Ultracold gases, trapped gases)  
Fund: This work was supported by the National Natural Science Foundation of China [Grant Nos. U23A2073 (P.Z.) and 11547034 (H.Z.)].
Corresponding Authors:  Feng Yuan, Tianxing Ma, Peng Zou     E-mail:  yuan@qdu.edu.cn;txma@bnu.edu.cn;phy.zoupeng@gmail.com

Cite this article: 

Huaisong Zhao(赵怀松), Feng Yuan(袁峰), Tianxing Ma(马天星), and Peng Zou(邹鹏) Dynamical structure factor and a new method to measure the pairing gap in two-dimensional attractive Fermi–Hubbard model 2025 Chin. Phys. B 34 117102

[1] Feld M, Fröhlich B, Vogt E, Koschorreck M and Köhl M 2011 Nature 480 75
[2] Stewart J T, Gaebler J P and Jin D S 2008 Nature 454 744
[3] Fröhlich B, Feld M, Vogt E, Koschorreck M, Zwerger W and Köhl M 2011 Phys. Rev. Lett. 106 105301
[4] Chin C, Bartenstein M, Altmeyer A, Riedl S, Jochim S, Denschlag J H and Grimm R 2004 Science 305 1128
[5] Sommer A T, Cheuk L W, Ku M J H, Bakr W S and Zwierlein M W 2012 Phys. Rev. Lett. 108 045302
[6] Zhai H 2015 Rep. Prog. Phys. 78 026001
[7] Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S and Zwierlein M W 2012 Phys. Rev. Lett. 109 095302
[8] Wang P, Yu Z Q, Fu Z, Miao J, Huang L, Chai S, Zhai H and Zhang J 2012 Phys. Rev. Lett. 109 095301
[9] Wang Z Y, Cheng X C, Wang B Z, Zhang J Y, Lu Y H, Yi C R, Niu S, Deng Y, Liu X J, Chen S and Pan J W 2021 Science 372 271
[10] Wu F, Guo G C, Zhang W and Yi W 2013 Phys. Rev. Lett. 110 110401
[11] Han R, Yuan F and Zhao H 2023 New J. Phys. 25 023011
[12] Veeravalli G, Kuhnle E, Dyke P and Vale C J 2008 Phys. Rev. Lett. 101 250403
[13] Hoinka S, Dyke P, Lingham M G, Kinnunen J J, Bruun G M and Vale C J 2017 Nat. Phys. 13 943
[14] Dyke P, Musolino S, Kurkjian H, Ahmed-Braun D J M, Pennings A, Herrera I, Hoinka S, Kokkelmans S J J M F, Colussi V E and Vale C J 2024 Phys. Rev. Lett. 132 223402
[15] Biss H, Sobirey L, Luick N, Bohlen M, Kinnunen J J, Bruun G M, Lompe T and Moritz H 2022 Phys. Rev. Lett. 128 100401
[16] Senaratne R, Cavazos-Cavazos D, Wang S, He F, Chang Y T, Kafle A, Pu H, Guan X W and Hulet R G 2022 Science 376 1305
[17] Li X, Luo X, Wang S, Xie K, Liu X P, Hu H, Chen Y A, Yao X C and Pan J W 2022 Science 375 528
[18] Pagano G, Mancini M, Cappellini G, Lombardi P, Schöfer F, Hu H, Liu X J, Catani J, Sias C, Inguscio M and Fallani L 2014 Nat. Phys. 10 198
[19] Combescot R, Giorgini S and Stringari S 2006 Europhys. Lett. 75 695
[20] Combescot R, KaganMY and Stringari S 2006 Phys. Rev. A 74 042717
[21] Zou P, Kuhnle E D, Vale C J and Hu H 2010 Phys. Rev. A 82 061605(R)
[22] Zou P, Dalfovo F, Sharma R, Liu X J and Hu H 2016 New J. Phys. 18 113044
[23] Zou P, Hu H and Liu X J 2018 Phys. Rev. A 98 011602(R)
[24] Hu H, Zou P, and Liu X J 2018 Phys. Rev. A 97 023615
[25] Zou P, Zhao H, He L, Liu X J and Hu H 2021 Phys. Rev. A 103 053310
[26] Kuhnle E D, Hu H, Liu X J, Dyke P, Mark M, Drummond P D, Hannaford P and Vale C J 2010 Phys. Rev. Lett. 105 070402
[27] Watabe S and Nikuni T 2010 Phys. Rev. A 82 033622
[28] Sobirey L, Biss H, Luick N, Bohlen M, Moritz H and Lompe T 2022 Phys. Rev. Lett. 129 083601
[29] Vitali E, Shi H, Qin M and Zhang S 2017 Phys. Rev. A 96 061601(R)
[30] Zhao H, Gao X, Liang W, Zou P and Yuan F 2020 New J. Phys. 22 093012
[31] Gao Z, He L, Zhao H, Peng S G and Zou P 2023 Phys. Rev. A 107 013304
[32] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[33] Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J and Pan J W 2016 Science 354 83
[34] Greiner M, Mandel O, Esslinger T, Hänsch T W and Bloch I 2002 Nature 415 39
[35] Spielman I B, Phillips W D and Porto J V 2008 Phys. Rev. Lett. 100 120402
[36] Thomas C K, Barter T H, Leung T H, Okano M, Jo G B, Guzman J, Kimchi I, Vishwanath A and Stamper-Kurn D M 2017 Phys. Rev. Lett. 119 100402
[37] Jördens R, Strohmaier N, Günter K, Moritz H and Esslinger T 2008 Nature 455 204
[38] Schneider U, Hackermüller L, Will S, Best T, Bloch I, Costi T A, Helmes R W, Rasch D and Rosch A 2008 Science 322 1520
[39] Greif D, Uehlinger T, Jotzu G, Tarruell L and Esslinger T 2013 Science 340 1307
[40] Hart R A, Duarte P M, Yang T L, Liu X, Paiva T, Khatami E, Scalettar R T, Trivedi N, Huse D A and Hulet R G 2015 Nature 519 211
[41] Parsons M F, Mazurenko A, Chiu C S, Ji G, Greif D and Greiner M 2016 Science 353 1253
[42] Cheuk L W, Nichols M A, Lawrence K R, Okan M, Zhang H, Khatami E, Trivedi N, Paiva T, Rigol M and Zwierlein M W 2016 Science 353 1260
[43] Koepsell J, Bourgund D, Sompet P, Hirthe S, Bohrdt A,Wang Y, Grusdt F, Demler E, Salomon G, Gross C and Bloch I 2021 Science 374 82
[44] Boll M, Hilker T A, Salomon G, Omran A, Nespolo J, Pollet L, Bloch I and Gross C 2016 Science 353 1257
[45] Brown P T, Mitra D, Guardado-Sanchez E, Schauß P, Kondov S S, Khatami E, Paiva T, Trivedi N, Huse D A and Bakr W S 2017 Science 357 1385
[46] Arovas D P, Berg E, Kivelson S A and Raghu S 2022 Annual Review of Condensed Matter Physics 13 239
[47] Scalettar R T, Loh E Y, Gubernatis J E, Moreo A, White S R, Scalapino D J, Sugar R L and Dagotto E 1989 Phys. Rev. Lett. 62 1407
[48] Kyung B, Allen S and Tremblay A M S 2001 Phys. Rev. B 64 075116
[49] Honerkamp C and Hofstetter W 2004 Phys. Rev. Lett. 92 170403
[50] Mondaini R, Nikoliø’c P and Rigol M 2015 Phys. Rev. A 92 013601[51] Cocchi E, Miller L A, Drewes J H, Koschorreck M, Pertot D, Brennecke F and Köhl M 2016 Phys. Rev. Lett. 116 175301
[52] Strohmaier N, Takasu Y, Günter K, Jördens R, Köhl M, Moritz H and Esslinger T 2007 Phys. Rev. Lett. 99 220601
[53] Ho A F, Cazalilla M A and Giamarchi T 2009 Phys. Rev. A 79 033620
[54] Moreo A and Scalapino D J 2007 Phys. Rev. Lett. 98 216402
[55] Gukelberger J, Lienert S, Kozik E, Pollet L and Troyer M 2016 Phys. Rev. B 94 075157
[56] Paiva T, dos Santos R R, Scalettar R T and Denteneer P J H 2004 Phys. Rev. B 69 184501
[57] Shenoy V B 2008 Phys. Rev. B 78 134503
[58] Mitra D, Brown P T, Guardado-Sanchez E, Kondov S S, Devakul T, Huse D A, Schauß P and Bakr W S 2018 Nat. Phys. 14 173
[59] Brown P T, Guardado-Sanchez E, Spar B M, Huang EW, Devereaux T P and Bakr W S 2020 Nat. Phys. 16 26
[60] Hackermüller L, Schneider U, Moreno-Cardoner M, Kitagawa T, Best T, Will S, Demler E, Altman E, Bloch I and Paredes B 2010 Science 327 1621
[61] Gall M, Chan C F, Wurz N and Köhl M 2020 Phys. Rev. Lett. 124 010403
[62] Schneider U, Hackermüller L, Ronzheimer J P, Will S, Braun S, Best T, Bloch I, Demler E, Mandt S, Rasch D and Rosch A 2012 Nat. Phys. 8 213
[63] Hartke T, Oreg B, Turnbaugh C, Jia N and Zwierlein M 2023 Science 381 82
[64] Vitali E, Kelly P, Lopez A, Bertaina G and Galli D E 2020 Phys. Rev. A 102 053324
[65] Zhao H, Han R, Qin L, Yuan F and Zou P 2024 Phys. Rev. A 110 063326
[66] Liu X J, Hu H, Minguzzi A and Tosi M P 2004 Phys. Rev. A 69 043605
[67] He L 2016 Ann. Phys. 373 470
[68] Ganesh R, Paramekanti A and Burkov A A 2009 Phys. Rev. A 80 043612
[69] Han R, Yuan F and Zhao H 2022 Europhys. Lett. 139 25001
[70] Nocera A, Patel N D, Fernandez-Baca J, Dagotto E and Alvarez G 2016 Phys. Rev. B 94 205145
[71] Zhang S 1990 Phys. Rev. Lett. 65 120
[72] Qin M, Schäfer T, Andergassen S, Corboz P and Gull E 2022 Annual Review of Condensed Matter Physics 13 275
[73] Belkhir L and Randeria M 1994 Phys. Rev. B 49 6829
[74] Schäfer T,Wentzell N, Simkovic F, He Y Y, Hille C, Klett M, Eckhardt C J, Arzhang B, Harkov V, Le Régent F M, A. Kirsch, Wang Y, Kim A J, Kozik E, Stepanov E A, Kauch A, Andergassen S, Hansmann P, Rohe D, Vilk Y M, LeBlanc J P F, Zhang S, Tremblay A M S, Ferrero M, Parcollet O and Georges A 2021 Phys. Rev. X 11 011058
[75] Hafermann H, van Loon E G C P, Katsnelson M I, Lichtenstein A I and Parcollet O 2014 Phys. Rev. B 90 235105
[76] Feng S, Kuang L and Zhao H 2015 Physica C 517 5
[77] Anderson P W, Lee P A, Randeria M, Rice T M, Trivedi N and Zhang F C 2004 J. Phys.: Condens. Matter 16 R755
[78] Crameri F 2018 Geosci. Model Dev. 11 2541
[1] Coexistence of antiferromagnetism and unconventional superconductivity in a quasi-one-dimensional flat-band system: Creutz lattice
Feng Xu(徐峰) and Lei Zhang(张磊). Chin. Phys. B, 2024, 33(3): 037402.
[2] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[3] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[4] Temperature and doping dependent flat-band superconductivity on the Lieb-lattice
Feng Xu(徐峰), Lei Zhang(张磊), and Li-Yun Jiang(姜立运). Chin. Phys. B, 2021, 30(6): 067401.
[5] Superfluid states in α-T3 lattice
Yu-Rong Wu(吴玉容) and Yi-Cai Zhang(张义财). Chin. Phys. B, 2021, 30(6): 060306.
[6] Superfluid phases and excitations in a cold gas of d-wave interacting bosonic atoms and molecules
Zehan Li(李泽汉), Jian-Song Pan, and W Vincent Liu. Chin. Phys. B, 2021, 30(6): 066703.
[7] Cluster mean-field study of spinor Bose-Hubbard ladder: Ground-state phase diagram and many-body population dynamics
Li Zhang(张莉), Wenjie Liu(柳文洁), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(2): 026701.
[8] Fulde-Ferrell-Larkin-Ovchinnikov states in equally populated Fermi gases in a two-dimensional moving optical lattice
Jin-Ge Chen(陈金鸽), Yue-Ran Shi(石悦然), Ren Zhang(张仁), Kui-Yi Gao(高奎意), and Wei Zhang(张威). Chin. Phys. B, 2021, 30(10): 100305.
[9] Periodically modulated interaction effect on transport of Bose-Einstein condensates in lattice with local defects
Kun-Qiang Zhu(朱坤强), Zi-Fa Yu(鱼自发), Ji-Ming Gao(高吉明), Ai-Xia Zhang(张爱霞), Hong-Ping Xu(徐红萍), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2019, 28(1): 010307.
[10] Sub-millikelvin station at Synergetic Extreme Condition User Facility
Zhi Gang Cheng(程智刚), Jie Fan(樊洁), Xiunian Jing(景秀年), Li Lu(吕力). Chin. Phys. B, 2018, 27(7): 070702.
[11] Bogoliubov excitations in a Bose-Hubbard model on a hyperhoneycomb lattice
Wen-yan Zhou(周雯琰), Ya-jie Wu(吴亚杰), Su-Peng Kou(寇谡鹏). Chin. Phys. B, 2018, 27(5): 050302.
[12] Off-site trimer superfluid on a one-dimensional optical lattice
Er-Nv Fan(范二女), Tony C Scott, Wan-Zhou Zhang(张万舟). Chin. Phys. B, 2017, 26(4): 043701.
[13] Superfluidity of coherent light in self-focusing nonlinear waveguides
Ze Cheng(成泽). Chin. Phys. B, 2017, 26(4): 046701.
[14] Topological superfluid in a two-dimensional polarized Fermi gas with spin-orbit coupling and adiabatic rotation
Lei Qiao(乔雷), Cheng Chi(迟诚). Chin. Phys. B, 2017, 26(12): 120304.
[15] Landau damping in a dipolar Bose-Fermi mixture in the Bose-Einstein condensation (BEC) limit
S M Moniri, H Yavari, E Darsheshdar. Chin. Phys. B, 2016, 25(12): 126701.
No Suggested Reading articles found!