Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 100305    DOI: 10.1088/1674-1056/abf346
GENERAL Prev   Next  

Fulde-Ferrell-Larkin-Ovchinnikov states in equally populated Fermi gases in a two-dimensional moving optical lattice

Jin-Ge Chen(陈金鸽)1, Yue-Ran Shi(石悦然)1, Ren Zhang(张仁)2, Kui-Yi Gao(高奎意)1,3,†, and Wei Zhang(张威)1,3,‡
1 Department of Physics, Renmin University of China, Beijing 100872, China;
2 School of Physics, Xi'an Jiaotong University, Xi'an 710049, China;
3 Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China
Abstract  We study the possibility of stabilizing a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in an equally populated two-component Fermi gas trapped in a moving two-dimensional optical lattice. For a system with nearly half filling, we find that a finite pairing momentum perpendicular to the moving direction can be spontaneously induced for a proper choice of lattice velocity. As a result, the total pairing momentum is tilted towards the nesting vector to take advantage of the significant enhancement of the density of states.
Keywords:  FFLO state      optical lattice      ultracold Fermi gas      superfluid  
Received:  03 March 2021      Revised:  23 March 2021      Accepted manuscript online:  30 March 2021
PACS:  03.75.Ss (Degenerate Fermi gases)  
  03.75.Hh (Static properties of condensates; thermodynamical, statistical, and structural properties)  
  05.30.Fk (Fermion systems and electron gas)  
Fund: Project supported by the Beijing Natural Science Foundation, China (Grant No. Z180013), the National Natural Science Foundation of China (Grant Nos. 11522436, 11774425, and 12074428), the National Key R&D Program of China (Grant No. 2018YFA0306501), and the Research Funds of Renmin University of China (Grant Nos. 16XNLQ03 and 18XNLQ15).
Corresponding Authors:  Kui-Yi Gao, Wei Zhang     E-mail:  kgao@ruc.edu.cn;wlzhang@ruc.edu.cn

Cite this article: 

Jin-Ge Chen(陈金鸽), Yue-Ran Shi(石悦然), Ren Zhang(张仁), Kui-Yi Gao(高奎意), and Wei Zhang(张威) Fulde-Ferrell-Larkin-Ovchinnikov states in equally populated Fermi gases in a two-dimensional moving optical lattice 2021 Chin. Phys. B 30 100305

[1] Fulde P and Ferrel R A 1964 Phys. Rev. 135 A550
[2] Larkin A I and Ovchinnikov Y N 1965 Sov. Phys. JETP 20 762
[3] Casalbuoni R and Nardulli G 2004 Rev. Mod. Phys. 76 263
[4] Radovan H A, Fortune N A, Murphy T P, Hannahs S T, Palm E C, Tozer S W and Hall D 2003 Nature 425 51
[5] Alford M, Bowers J A and Rajagopal K 2001 Phys. Rev. D 63 074016
[6] Zwierlein M W, Schirotzek A, Schunck C H and Ketterle W 2006 Science 311 492
[7] Partridge G B, Li W, Kamar R I, Liao Y and Hulet R G 2006 Science 311 503
[8] Machida K, Mizushima T and Ichioka M 2006 Phys. Rev. Lett. 97 120407
[9] Kinnunen J, Jensen L M and Törmä P 2006 Phys. Rev. Lett. 96 110403
[10] He Y, Chien C C, Chen Q J and Levin K 2007 Phys. Rev. A 75 021602(R)
[11] Sheehy D E and Radzihovsky L 2006 Phys. Rev. Lett. 96 060401
[12] Yi W and Duan L M 2006 Phys. Rev. A 73 031604(R)
[13] Zhang W and Duan L M 2007 Phys. Rev. A 76 042710
[14] Koponen T K, Paananen T, Martikainen J P and Törmä P 2007 Phys. Rev. Lett. 99 120403
[15] Koponen T K, Paananen T, Maitikainen J P, Bakhtiari M R and Törmä P 2008 New J. Phys. 10 045014
[16] Cui X and Wang Y 2010 Phys. Rev. A 81 023618
[17] Yang K 2001 Phys. Rev. B 63 140511
[18] Orso G 2007 Phys. Rev. Lett. 98 070402
[19] Hu H, Liu X J and Drummond P D 2007 Phys. Rev. Lett. 98 070403
[20] Feiguin A E and Heidrich-Meisner F 2007 Phys. Rev. B 76 220508
[21] Parish M M, Baur S K, Mueller E J and Huse D A 2007 Phys. Rev. Lett. 99 250403
[22] Conduit G J, Conlon P H and Simons B D 2008 Phys. Rev. A 77 053617
[23] Batrouni G G, Huntley M H, Rousseau V G and Scalettar R T 2008 Phys. Rev. Lett. 100 116405
[24] Rizzi M, Polini M, Cazalilla M A, Bakhtiari M R, Tosi M P and Fazio R 2008 Phys. Rev. B 77 245105
[25] Radzihovsky L and Sheehy D E 2010 Rep. Prog. Phys. 73 076501
[26] Korolyuk A, Massel F and Törmä P 2010 Phys. Rev. Lett. 104 236402
[27] Swanson M, Loh Y L and Trivedi N 2012 New J. Phys. 14 033036
[28] Kajala J, Massel F and Törmä P 2011 Phys. Rev. A 84 041601(R)
[29] Doh H, Song M and Kee H Y 2006 Phys. Rev. Lett. 97 257001
[30] Fallani L, De Sarlo L, Lye J E, Modugno M, Saers R, Fort C and Inguscio M 2004 Phys. Rev. Lett. 93 140406
[31] Mun J, Medley P, Campbell G K, Marcassa L G, Pritchard D E and Ketterle W 2007 Phys. Rev. Lett. 99 150604
[1] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[2] Theoretical calculations on Landé $g$-factors and quadratic Zeeman shift coefficients of $n$s$n$p $^{3} {P}^{o}_{0}$ clock states in Mg and Cd optical lattice clocks
Benquan Lu(卢本全) and Hong Chang(常宏). Chin. Phys. B, 2023, 32(1): 013101.
[3] Effective sideband cooling in an ytterbium optical lattice clock
Jin-Qi Wang(王进起), Ang Zhang(张昂), Cong-Cong Tian(田聪聪), Ni Yin(殷妮), Qiang Zhu(朱强), Bing Wang(王兵), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), and Bao-Long Lv(吕宝龙). Chin. Phys. B, 2022, 31(9): 090601.
[4] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[5] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[6] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[7] Theoretical calculation of the quadratic Zeeman shift coefficient of the 3P0o clock state for strontium optical lattice clock
Benquan Lu(卢本全), Xiaotong Lu(卢晓同), Jiguang Li(李冀光), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(4): 043101.
[8] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[9] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[10] Temperature and doping dependent flat-band superconductivity on the Lieb-lattice
Feng Xu(徐峰), Lei Zhang(张磊), and Li-Yun Jiang(姜立运). Chin. Phys. B, 2021, 30(6): 067401.
[11] Superfluid states in α-T3 lattice
Yu-Rong Wu(吴玉容) and Yi-Cai Zhang(张义财). Chin. Phys. B, 2021, 30(6): 060306.
[12] Superfluid phases and excitations in a cold gas of d-wave interacting bosonic atoms and molecules
Zehan Li(李泽汉), Jian-Song Pan, and W Vincent Liu. Chin. Phys. B, 2021, 30(6): 066703.
[13] Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice
Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(6): 060307.
[14] Cluster mean-field study of spinor Bose-Hubbard ladder: Ground-state phase diagram and many-body population dynamics
Li Zhang(张莉), Wenjie Liu(柳文洁), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(2): 026701.
[15] Nonlinear dynamical stability of gap solitons in Bose-Einstein condensate loaded in a deformed honeycomb optical lattice
Hongjuan Meng(蒙红娟), Yushan Zhou(周玉珊), Xueping Ren(任雪平), Xiaohuan Wan(万晓欢), Juan Zhang(张娟), Jing Wang(王静), Xiaobei Fan(樊小贝), Wenyuan Wang(王文元), and Yuren Shi(石玉仁). Chin. Phys. B, 2021, 30(12): 126701.
No Suggested Reading articles found!