|
|
Fulde-Ferrell-Larkin-Ovchinnikov states in equally populated Fermi gases in a two-dimensional moving optical lattice |
Jin-Ge Chen(陈金鸽)1, Yue-Ran Shi(石悦然)1, Ren Zhang(张仁)2, Kui-Yi Gao(高奎意)1,3,†, and Wei Zhang(张威)1,3,‡ |
1 Department of Physics, Renmin University of China, Beijing 100872, China; 2 School of Physics, Xi'an Jiaotong University, Xi'an 710049, China; 3 Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China |
|
|
Abstract We study the possibility of stabilizing a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in an equally populated two-component Fermi gas trapped in a moving two-dimensional optical lattice. For a system with nearly half filling, we find that a finite pairing momentum perpendicular to the moving direction can be spontaneously induced for a proper choice of lattice velocity. As a result, the total pairing momentum is tilted towards the nesting vector to take advantage of the significant enhancement of the density of states.
|
Received: 03 March 2021
Revised: 23 March 2021
Accepted manuscript online: 30 March 2021
|
PACS:
|
03.75.Ss
|
(Degenerate Fermi gases)
|
|
03.75.Hh
|
(Static properties of condensates; thermodynamical, statistical, and structural properties)
|
|
05.30.Fk
|
(Fermion systems and electron gas)
|
|
Fund: Project supported by the Beijing Natural Science Foundation, China (Grant No. Z180013), the National Natural Science Foundation of China (Grant Nos. 11522436, 11774425, and 12074428), the National Key R&D Program of China (Grant No. 2018YFA0306501), and the Research Funds of Renmin University of China (Grant Nos. 16XNLQ03 and 18XNLQ15). |
Corresponding Authors:
Kui-Yi Gao, Wei Zhang
E-mail: kgao@ruc.edu.cn;wlzhang@ruc.edu.cn
|
Cite this article:
Jin-Ge Chen(陈金鸽), Yue-Ran Shi(石悦然), Ren Zhang(张仁), Kui-Yi Gao(高奎意), and Wei Zhang(张威) Fulde-Ferrell-Larkin-Ovchinnikov states in equally populated Fermi gases in a two-dimensional moving optical lattice 2021 Chin. Phys. B 30 100305
|
[1] Fulde P and Ferrel R A 1964 Phys. Rev. 135 A550 [2] Larkin A I and Ovchinnikov Y N 1965 Sov. Phys. JETP 20 762 [3] Casalbuoni R and Nardulli G 2004 Rev. Mod. Phys. 76 263 [4] Radovan H A, Fortune N A, Murphy T P, Hannahs S T, Palm E C, Tozer S W and Hall D 2003 Nature 425 51 [5] Alford M, Bowers J A and Rajagopal K 2001 Phys. Rev. D 63 074016 [6] Zwierlein M W, Schirotzek A, Schunck C H and Ketterle W 2006 Science 311 492 [7] Partridge G B, Li W, Kamar R I, Liao Y and Hulet R G 2006 Science 311 503 [8] Machida K, Mizushima T and Ichioka M 2006 Phys. Rev. Lett. 97 120407 [9] Kinnunen J, Jensen L M and Törmä P 2006 Phys. Rev. Lett. 96 110403 [10] He Y, Chien C C, Chen Q J and Levin K 2007 Phys. Rev. A 75 021602(R) [11] Sheehy D E and Radzihovsky L 2006 Phys. Rev. Lett. 96 060401 [12] Yi W and Duan L M 2006 Phys. Rev. A 73 031604(R) [13] Zhang W and Duan L M 2007 Phys. Rev. A 76 042710 [14] Koponen T K, Paananen T, Martikainen J P and Törmä P 2007 Phys. Rev. Lett. 99 120403 [15] Koponen T K, Paananen T, Maitikainen J P, Bakhtiari M R and Törmä P 2008 New J. Phys. 10 045014 [16] Cui X and Wang Y 2010 Phys. Rev. A 81 023618 [17] Yang K 2001 Phys. Rev. B 63 140511 [18] Orso G 2007 Phys. Rev. Lett. 98 070402 [19] Hu H, Liu X J and Drummond P D 2007 Phys. Rev. Lett. 98 070403 [20] Feiguin A E and Heidrich-Meisner F 2007 Phys. Rev. B 76 220508 [21] Parish M M, Baur S K, Mueller E J and Huse D A 2007 Phys. Rev. Lett. 99 250403 [22] Conduit G J, Conlon P H and Simons B D 2008 Phys. Rev. A 77 053617 [23] Batrouni G G, Huntley M H, Rousseau V G and Scalettar R T 2008 Phys. Rev. Lett. 100 116405 [24] Rizzi M, Polini M, Cazalilla M A, Bakhtiari M R, Tosi M P and Fazio R 2008 Phys. Rev. B 77 245105 [25] Radzihovsky L and Sheehy D E 2010 Rep. Prog. Phys. 73 076501 [26] Korolyuk A, Massel F and Törmä P 2010 Phys. Rev. Lett. 104 236402 [27] Swanson M, Loh Y L and Trivedi N 2012 New J. Phys. 14 033036 [28] Kajala J, Massel F and Törmä P 2011 Phys. Rev. A 84 041601(R) [29] Doh H, Song M and Kee H Y 2006 Phys. Rev. Lett. 97 257001 [30] Fallani L, De Sarlo L, Lye J E, Modugno M, Saers R, Fort C and Inguscio M 2004 Phys. Rev. Lett. 93 140406 [31] Mun J, Medley P, Campbell G K, Marcassa L G, Pritchard D E and Ketterle W 2007 Phys. Rev. Lett. 99 150604 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|