| SPECIAL TOPIC — Structures and properties of materials under high pressure |
Prev
Next
|
|
|
Structure and superconductivity of La2PrNi2O7 under pressure |
| Qing Tian(田清)†, Denghui Zhu(朱登辉)†, and Wei Zhang(张微)‡ |
| Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China |
|
|
|
|
Abstract Nickel-based superconductors have attracted great attention due to the finding of the Ruddlesden–Popper (R–P) bilayer nickelate La3Ni2O7 with superconducting critical temperature (Tc) of 80 K at pressure above 14 GPa. Recent efforts have been devoted to the study of La2PrNi2O7, while the detailed structure remains unclear. In this work, we explore the stability and physical properties of such an interesting system by using density functional theory and the U parameter simulation method implemented in VASP. The results show that the enthalpy of La2PrNi2O7is slightly larger than its parent material bilayer R–P nickelate La3Ni2O7. The electronic structure analysis indicates that near the Fermi level, the eg orbit of Ni dominates and strongly hybridizes with the 2p orbit of O, thereby forming a significant van Hove singularity that is conducive to superconductivity. The Amam phase to the I4/mmm phase occurs, accompanied by an increase in the bandwidth of Ni 3d z2 and an enhancement of the bonding–antibonding splitting (from about 0.5 eV to 1.5 eV), which leads to an increase in the density of states at the Fermi level. Our findings provide insights into the preparation and superconductivity of R–P bilayer nickelate.
|
Received: 26 February 2025
Revised: 25 August 2025
Accepted manuscript online: 26 August 2025
|
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
| |
74.70.-b
|
(Superconducting materials other than cuprates)
|
| |
71.2.Pq
|
|
|
| Fund: This work is supported by the National Key Research and Development Program of China (Grant No. 2023YFA1406103), the Education Department of Jilin Province, and Science and Technology Plan (Grant No. JJKH20211042KJ). |
Corresponding Authors:
Wei Zhang
E-mail: zhangw_bxx@jlu.edu.cn
|
Cite this article:
Qing Tian(田清), Denghui Zhu(朱登辉), and Wei Zhang(张微) Structure and superconductivity of La2PrNi2O7 under pressure 2025 Chin. Phys. B 34 117101
|
[1] Bednorz J G and Müller K A 1986 Z. Phys. B: Condens. Matter 64 189 [2] Anderson P W 1987 Science 235 1196 [3] Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17 [4] Lechermann F 2020 Phys. Rev. B 101 081110 [5] Schilling A, Cantoni M, Guo J D and Ott H R 1993 Nature 363 56 [6] Gao L, Xue Y Y, Chen F, Xiong Q, Men, R L, Ramirez D, Chu C W, Eggert J H and Mao H K 1994 Phys. Rev. B 50 4260 [7] Zhang F C and Rice T M 1988 Phys. Rev. B 37 3759 [8] Shen Z X, Dessau D S, Wells B O, King D M, Spicer W E, Arko A J, Marshall D, Lombardo L W, Kapitulnik A, Dickinson P, Doniach S, DiCarlo J, Loeser T and Park C H 1993 Phys. Rev. Lett. 70 1553 [9] Scalapino D J 2012 Rev. Mod. Phys. 84 1383 [10] Maeno Y, Hashimoto H, Yoshida K, Nishizaki S, Fujita T, Bednorz J G and Lichtenberg F 1994 Nature 372 532 [11] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296 [12] Wang F and Senthil T 2011 Phys. Rev. Lett. 106 136402 [13] Anisimov V I, Bukhvalov D and Rice T M 1999 Phys. Rev. B 59 7901 [14] Lechermann F 2020 Phys. Rev. B 191 081110 [15] Wang N N, Yang M W, Yang Z, Chen K Y, Zhang H, Zhang Q H, Zhu Z H, Uwatoko Y, Gu L, Dong X L, Sun J P, Jin K J and Cheng J G 2022 Nat. Commun. 13 4367 [16] Li D, Lee K, Wang, B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y and Hwang H Y 2019 Nature 572 624 [17] Zeng S, Tang C S, Yin X, Li C, Li M, Huang Z, Hu J X, Liu W, Omar G J, Jani H, Lim Z S, Han K, Wan D Y, Yang P, Pennycook S J, Wee A T S and Ariando A 2020 Phys. Rev. Lett. 125 147003 [18] Pan G A, Segedin D F, LaBollita H, Song Q, Nica E M, Goodge B H, Pierce A T, Doyle S, Novakov S, Córdova Carrizales D, N’Diaye A T, Shafer P, Paik H, Heron J T, Mason J A, Yacoby A, Kourkoutis L F, Erten O, Brooks C M, Botana A S and Mundy J A 2022 Nat. Mater. 21 160 [19] Zhang M X, Pei C Y,Wang Q, Zhao Y, Li C H, CaoWZ, Zhu S H,Wu J F and Qi Y P 2024 J. Mater. Sci. Technol. 185 147 [20] Wang M,Wen H H,Wu T, Yao D X and Xiang T 2024 Chin. Phys. Lett. 41 077402 [21] Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M and Wang M 2023 Nature 621 493 [22] Hou J, Yang P T, Liu Z Y, Li J Y, Shan P F, Ma L, Wang G, Wang N N, Guo H Z, Sun J P, Uwatoko Y,Wang M, Zhang G M,Wang B S and Cheng J G 2023 Chin. Phys. Lett. 40 117302[23] Zhang Y N, Su D J, Huang Y N, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L and Yuan H Q 2024 Nat. Phys. 20 1269 [24] Wang G, Wang N N, Shen X L, Hou J, Ma L, Shi L F, Ren Z A, Gu Y D, Ma H M, Yang P T, Liu Z Y, Guo H Z, Sun J P, Zhang G M, Calder S, Yan J Q, Wang B S, Uwatoko Y and Cheng J G 2024 Phys. Rev. X 14 011040 [25] Wang L H, Li Y, Xie S Y, Liu F Y, Sun H L, Huang C X, Gao Y, Nakagawa T, Fu B Y, Dong B, Cao Z H, Yu R Z, Kawaguchi S I, Kadobayashi H, Wang M, Jin C Q, Mao H K and Liu H Z 2024 J. Am. Chem. Soc. 146 7506 [26] Puphal P, Reiss P, Enderlein N, Wu Y M, Khaliullin G, Sundaramurthy V, Priessnitz T, Knauft M and Suthar A 2024 Phys. Rev. Lett. 133 146002 [27] Dong Z H, Huo M W, Li J, Li J Y, Li P C, Sun H L, Gu L, Lu Y, Wang M, Wang Y Y and Chen Z 2024 Nature 630 847 [28] Chen X L, Zhang J J, Thind A S, Sharma S, LaBollita H, Peterson G, Zheng H, Phelan D P, Botana A S, Klie R F and Mitchell J F 2024 J. Am. Chem. Soc. 146 3640 [29] Wang H Z, Chen L, Rutherford A, Zhou H D and XieWW2024 Inorg. Chem. 63 5020 [30] Liu Y B, Mei J W, Ye F, Chen W Q and Yang F 2023 Phys. Rev. Lett. 131 236002 [31] Zhou Y Z, Guo J, Cai S, Sun H L, Li C Y, Zhao J Y, Wang P Y, Han J Y, Chen X T, Chen Y J, Wu Q, Ding Y, Xiang T, Mao H K and Sun L L 2025 Matter Radiat. at Extremes 10 027801 [32] Sun L L, Zhou Y Z, Guo J, Cai S,Wang P Y, Zhao J Y, Han J Y, Chen X T, Wu Q, Ding Y, Xiang T and Mao H K 2024 Evidence of filamentary superconductivity in pressurized La3Ni2O7-delta single crystals [33] Wang N N, Wang G, Shen X L, Hou J, Luo J, Ma X P, Yang H X, Shi L F, Dou J, Feng J, Yang J, Shi Y Q, Ren Z A, Ma H M, Yang P T, Liu Z Y, Liu Y, Zhang H, Dong X L, Wang Y X, Jiang K, Hu J P, Nagasaki S, Kitagawa K, Cheng J G 2024 Nature 634 579 [34] Zunger A,Wei S H, Ferreira L G and Bernard J E 1990 Phys. Rev. Lett. 65 353 [35] Van de Walle A and Ceder G 2002 J. Phase Equilib. 23 348 [36] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A. P 1998 Rev. B 57 1505 [37] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [38] Blochl P E 1994 Phys. Rev. B 50 17953 [39] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [40] Chen W, Yuan P, Zhang S, Sun Q, Liang E and Jia Y 2012 Physica B 407 1038 [41] Tran F, Schweifer J, Blaha P, Schwarz K and Novák P 2008 Phys. Rev. B 77 085123 [42] Kanoun M B, Reshak A H, Kanoun-Bouayed N and Goumri-Said S 2012 J. Magn. Magn. Mater. 324 1397 [43] Sayede A, Khenata R, Chahed A and Benhelal O 2013 J. Appl. Phys. 113 173501 [44] Bouadjemi B, Bentata S, Abbad A, Benstaali W and Bouhafs B 2013 Solid State Commun. 168 6 [45] Zhu Y H, Peng D, Zhang E K, Pan B Y, Chen X, Chen L X, Ren H F, Liu F Y, Hao Y Q, Li N N, Xing Z F, Lan F J, Han J Y, Wang J J, Jia D H, Wo H L, Gu Y Q, Gu Y M, Ji L, Wang W B, Gou H Y, Shen Y, Ying T P, Chen X L, Yang W G, Cao H B, Zheng C L, Zeng Q S, Guo J G and Zhao J 2024 Nature 631 531 [46] Zhang M X, Pei C Y, Peng D, Du X, Hu W X, Cao Y T, Wang Q, Wu J F, Li Y D, Liu H Y,Wen C H P, Song J, Zhao Y, Li C H, CaoWZ, Zhu S H, Zhang Q, Yu N, Cheng P H, Zhang L L, Li Z W, Zhao J K, Chen Y L, Jin C Q, Guo H J, Wu C J, Yang F, Zeng Q S, Yan S C, Yang L X and Qi Y P 2025 Phys. Rev. X 15 021005 [47] Li Q, Zhang Y J, Xiang Z N, Zhang Y H, Zhu X Y and Wen H H 2024 Chin. Phys. Lett. 41 017401 [48] Dronskowski and Blöchl 1993 J. Phys. Chem. 97 8617 [49] LaBollita H, Pardo V, Norman M R and Botana A S 2024 arXiv 2309.17279 [50] Liu Z, Huo M W, Li J, Li Q, Liu Y C, Dai Y M, Zhou X X, Hao J H, Lu Y, Wang M and Wen H H 2024 Nat. Commun. 15 7570 [51] Li Y D, Du X, Cao Y T, Pei C Y, Zhang M X, Zhao W X, Zhai K Y, Xu R Z, Liu Z K, Li Z W, Zhao J K, Li G, Qi Y P, Guo H J, Chen Y L and Yang L X 2024 Chin. Phys. Lett. 41 087402 [52] Jiang K, Wang Z Q and Zhang F C 2024 Chin. Phys. Lett. 41 017402 [53] Huo Z H, Zhang P, Shi H L, Yan X C, Duan D F and Cui T 2025 Phys. Rev. B 111 195118 [54] Pardo V and Pickett W E 2012 Phys. Rev. B 85 045111 [55] Pardo V and Pickett W E 2010 Phys. Rev. Lett. 105 266402 [56] Pardo V and Pickett W E 2011 Phys. Rev. B 83 245128 [57] Jung M C, Kapeghian J, Hanson C, Pamuk B and Botana A S 2022 Phys. Rev. B 105 085150 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|