Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 046701    DOI: 10.1088/1674-1056/26/4/046701
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Superfluidity of coherent light in self-focusing nonlinear waveguides

Ze Cheng(成泽)
School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  We establish the superfluidity theory of coherent light in waveguides made of nonlinear polar crystals. It is found that the pairing state of photons in a nonlinear polar crystal is the photonic superfluid state. The photon-photon interaction potential is an attractive effective interaction by exchange of virtual optical phonons. In the traveling-wave pairing state of photons, the photon number is conserved, which is similar to the Bose-Einstein condensation (BEC) state of photons. In analogy to the BCS-BEC crossover theory of superconductivity, we derive a set of coupled order parameter and number equations, which determine the solution of the traveling-wave superfluid state of photons. This solution gives the critical velocity of light in a self-focusing nonlinear waveguide. The most important property of the photonic superfluid state is that the system of photon pairs evolves without scattering attenuations.
Keywords:  superfluidity      photon pairing      nonlinear waveguide  
Received:  02 December 2016      Revised:  04 January 2017      Accepted manuscript online: 
PACS:  67.25.dj (Superfluid transition and critical phenomena)  
  64.60.-i (General studies of phase transitions)  
  67.10.Ba (Boson degeneracy)  
  78.30.-j (Infrared and Raman spectra)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10174024 and 10474025).
Corresponding Authors:  Ze Cheng     E-mail:  zcheng@mail.hust.edu.cn

Cite this article: 

Ze Cheng(成泽) Superfluidity of coherent light in self-focusing nonlinear waveguides 2017 Chin. Phys. B 26 046701

[1] Hasegawa A and Tappert F 1973 Appl. Phys. Lett. 23 142
[2] Hasegawa A and Tappert F 1973 Appl. Phys. Lett. 23 171
[3] Hasegawa A 1990 Optical Solitons in Fibers, 2nd edn. (Berlin: Springer-Verlag)
[4] Carter S J, Drummond P D, Reid M D and Shelby R M 1987 Phys. Rev. Lett. 58 1841
[5] Drummond P D, Carter S J and Shelby R M 1989 Opt. Lett. 14 373
[6] Carter S J and Drummond P D 1991 Phys. Rev. Lett. 67 3757
[7] Rosenbluh M and Shelby R M 1991 Phys. Rev. Lett. 66 153
[8] Cheng Z 1991 Phys. Rev. Lett. 67 2788
[9] Cheng Z 1995 Phys. Rev. A 51 675
[10] Landau L D and Lifshitz E M 1980 Statistical Physics, 3rd edn. (Oxford: Reed Educational) Part 2 p. 88
[11] Leggett A J 2006 Quantum Liquids: Bose Condensation and Cooper Pairing in Condensed-Matter Systems (Oxford: Oxford University Press) p. 31
[12] Cheng Z 2002 J. Opt. Soc. Am. B 19 1692
[13] Yin M and Cheng Z 2008 Phys. Rev. A 78 063829
[14] Klaers J, Vewinger F and Weitz M 2010 Nat. Phys. 6 512
[15] Bolda E L, Chiao R Y and Zurek W H 2001 Phys. Rev. Lett. 86 416
[16] Leboeuf P and Moulieras S 2010 Phys. Rev. Lett. 105 163904
[17] Chiao R Y and Boyce J 1999 Phys. Rev. A 60 4114
[18] Chiao R Y 2000 Opt. Commun. 179 157
[19] Klaers J, Schmitt J, Vewinger F and Weitz M 2010 Nature 468 545
[20] Klaers J, Schmitt J, Damm T, Vewinger F and Weitz M 2012 Phys. Rev. Lett. 108 160403
[21] Kirton P and Keeling J 2013 Phys. Rev. Lett. 111 100404
[22] Michinel H, Campo-Táboas J, García-Fernández R, Salgueiro J R and Quiroga-Teixeiro M L 2002 Phys. Rev. E 65 066604
[23] Szymanska M H, Littlewood P B and Simons B D 2003 Phys. Rev. A 68 013818
[24] Alodjants A P, Chestnov I Yu and Arakelian S M 2011 Phys. Rev. A 83 053802
[25] Snoke D 2012 in Exciton Polaritons in Microcavities: New Frontiers, eds. Sanvitto D and Timofeev V (Berlin: Springer-Verlag) p. 307
[26] Carusotto I and Ciuti C 2013 Rev. Mod. Phys. 85 299, and references therein
[27] Alodjants A P, Barinov I O and Arakelian S M 2010 J. Phys. B: At. Mol. Opt. Phys. 43 095502
[28] Martin R M and Damen T C 1971 Phys. Rev. Lett. 26 86
[29] Schubert M and Wilhelmi B 1986 Nonlinear Optics and Quantum Electronics (New York: Wiley) p. 553
[30] Hillery M and Mlodinow L D 1985 Phys. Rev. A 31 797
[31] Hayes W and Loudon R 1978 Scattering of Light by Crystals (New York: Wiley)
[32] Callaway J 1991 Quantum Theory of the Solid State, 2nd edn. (New York: Academic Press) pp. 720
[33] Kivshar Y S and Agrawal G P 2003 Optical Solitons: From Fibres to Photonic Crystals (San Diego: Academic Press)
[34] Snyder A W and Love J D 1983 Optical Waveguide Theory (London: Chapman and Hall)
[35] Loudon R 1970 J. Phys. A: Gen. Phys. 3 233
[36] Reichl L E 1980 A Modern Course in Statistical Physics (Austin: University of Texas Press)
[37] Cheng Z 2012 Phys. Rev. E 86 051102
[38] Hodby J W 1974 in Crystals with the Fluorite Structure: Electronic, Vibrational, and Defect Properties, ed. Hayes W (Oxford: Clarendon) p. 1
[39] Adair R, Chase L L and Payne S A 1989 Phys. Rev. B 39 3337
[40] Wilkin N K, Gunn J M F and Smith R A 1998 Phys. Rev. Lett. 80 2265
[41] Zhu Q Z and Wu B 2015 Chin. Phys. B 24 050507
[42] Roberto O 2012 Chin. Phys. B 21 070306
[43] Tanaka G, Watanabe M and Yano K 1988 Fiber and Integrated Optics 7 47
[1] Phase-matched second-harmonic generation in hybrid polymer-LN waveguides
Zijie Wang(王梓杰), Bodong Liu(刘伯东), Chunhua Wang(王春华), and Huakang Yu(虞华康). Chin. Phys. B, 2022, 31(10): 104208.
[2] Periodically modulated interaction effect on transport of Bose-Einstein condensates in lattice with local defects
Kun-Qiang Zhu(朱坤强), Zi-Fa Yu(鱼自发), Ji-Ming Gao(高吉明), Ai-Xia Zhang(张爱霞), Hong-Ping Xu(徐红萍), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2019, 28(1): 010307.
[3] Evolution of the vortex state in the BCS-BEC crossover of a quasi two-dimensional superfluid Fermi gas
Xuebing Luo(罗学兵), Kezhao Zhou(周可召), Zhidong Zhang(张志东). Chin. Phys. B, 2016, 25(11): 110306.
[4] Superfluidity of Bose–Einstein condensates in ultracold atomic gases
Zhu Qi-Zhong (朱起忠), Wu Biao (吴飙). Chin. Phys. B, 2015, 24(5): 050507.
[5] Dynamics of optical rogue waves in inhomogeneous nonlinear waveguides
Zhang Jie-Fang (张解放), Jin Mei-Zhen (金美贞), He Ji-Da (何纪达), Lou Ji-Hui (楼吉辉), Dai Chao-Qing (戴朝卿). Chin. Phys. B, 2013, 22(5): 054208.
[6] On the role of the uncertainty principle in superconductivity and superfluidity
Roberto Onofrio . Chin. Phys. B, 2012, 21(7): 070306.
[7] Quantum phases of Bose gases on a lattice with pair-tunneling
Wang Yue-Ming(王月明) and Liang Jiu-Qing(梁九卿) . Chin. Phys. B, 2012, 21(6): 060305.
[8] Energy spectrum and superfluidity of spin-2 ultracold bosons in optical lattices
Wang Yong-Jun(王永俊), Liu Xian-Feng(刘先锋), and Han Jiu-Rong(韩玖荣). Chin. Phys. B, 2009, 18(12): 5301-5307.
[9] 3PF2 neutron superfluidity in neutron stars and three-body force effect
Cui Chang-Xi(崔常喜), Zuo Wei(左维), and H. J. Schulze. Chin. Phys. B, 2008, 17(9): 3289-3293.
[10] Exact self-similar solitary waves and collisions in nonlinear optical media
Li Hua-Mei(李画眉). Chin. Phys. B, 2008, 17(3): 759-763.
No Suggested Reading articles found!