Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 107502    DOI: 10.1088/1674-1056/adf4ab
Special Issue: SPECIAL TOPIC — Advanced magnonics
SPECIAL TOPIC — Advanced magnonics Prev   Next  

Propagation, generation, and utilization of topologically trivial magnetic solitons in magnetic nanowires

Kai-Tao Huang(黄铠涛) and X. S. Wang(王宪思)†
School of Physics and Electronics, Hunan University, Changsha 410082, China
Abstract  Magnetic solitons are nonlinear, local excitations in magnetic systems. In this study, we theoretically and numerically investigate the properties and generation of one-dimensional (1D) topologically trivial magnetic solitons in ferromagnetic nanowires. An approximate analytical soliton solution described by two free parameters is validated by comparison with the micromagnetic simulation. Across an interface between two media of different anisotropy, the reflection and refraction of a soliton are highly nonlinear, which differ from linear spin waves. A pair of magnetic solitons that propagate in opposite directions can be generated by alternately applying magnetic-field or spin-polarized-current pulses of opposite directions to at least two successive regions. Each soliton corresponds to a soliton solution that can be controlled by the generation process. These magnetic solitons can be used to drive domain wall motion over a distance determined by the soliton magnitude, allowing for discrete manipulation of domain walls compatible with the digital nature of information technology. Our findings pave the way for the application of topologically trivial solitons in spintronics.
Keywords:  magnetization dynamics      soliton      nonlinear dynamics  
Received:  01 April 2025      Revised:  24 July 2025      Accepted manuscript online:  28 July 2025
PACS:  75.78.-n (Magnetization dynamics)  
  05.45.Yv (Solitons)  
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. 11804045 and 12174093), the Natural Science Foundation of Hunan Province of China (Grant No. 2025JJ60001), and the Fundamental Research Funds for the Central Universities.
Corresponding Authors:  X. S. Wang     E-mail:  justicewxs@hnu.edu.cn

Cite this article: 

Kai-Tao Huang(黄铠涛) and X. S. Wang(王宪思) Propagation, generation, and utilization of topologically trivial magnetic solitons in magnetic nanowires 2025 Chin. Phys. B 34 107502

[1] Lin X, Yang W, Wang K L and Zhao W 2019 Nat. Electron. 2 274
[2] Hirohata A, Yamada K, Nakatani Y, Prejbeanu I L, Diény B, Pirro P and Hillebrands B 2020 J. Magn. Magn. Mater. 509 166711
[3] Noël P, Trier F, Vicente Arche L M, Bréhin J, Vaz D C, Garcia V, Fusil S, Barthélémy A, Vila L, Bibes M and Attané J P 2020 Nature 580 483
[4] Parkin S S P, Hayashi M and Thomas L 2008 Science 320 190
[5] Zhang X, Zhao G P, Fangohr H, Liu J P, Xia W X, Xia J and Morvan F J 2015 Sci. Rep. 5 7643
[6] Allwood D A, Xiong G, Faulkner C C, Atkinson D, Petit D and Cowburn R P 2005 Science 309 1688
[7] Luo S, Song M, Li X, Zhang Y, Hong J, Yang X, Zou X, Xu N and You L 2018 Nano Lett. 18 1180
[8] Luo Z, Hrabec A, Dao T P, Sala G, Finizio S, Feng J, Mayr S, Raabe J, Gambardella P and Heyderman L J 2020 Nature 579 214
[9] Jiao X, Wang X S and Lan J 2024 Phys. Rev. B 109 094428
[10] Wang X S and Wang X R 2021 Topology in Magnetism (Chambridge: Springer International Publishing) pp. 357-403
[11] Nagaosa N and Tokura Y 2013 Nat. Nanotechnol. 8 899
[12] Thiaville A and Miltat J 2018 Topology and Magnetic Domain Walls (Chambridge: Springer International Publishing) pp. 41-73
[13] Ma X P, Ai X, Yang X X, Cai M X, Shim J H and Piao H G 2023 J. Magn. Magn. Mater. 581 170665
[14] Wang X S, Qaiumzadeh A and Brataas A 2019 Phys. Rev. Lett. 123 147203
[15] Jing K Y, Sun Z Z and Wang X R 2024 Phys. Rev. B 110 054414
[16] de Assis I R, Mertig I and Göbel B 2024 Phys. Rev. B 110 064404
[17] Liu Y and Nagaosa N 2024 Phys. Rev. Lett. 132 126701
[18] Zang J, Mostovoy M, Han J H and Nagaosa N 2011 Phys. Rev. Lett. 107 136804
[19] Hayashi M, Thomas L, Rettner C, Moriya R, Bazaliy Y B and Parkin S S P 2007 Phys. Rev. Lett. 98 037204
[20] Jiang W, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E and Hoffmann A 2015 Science 349 283
[21] Kosevich A, Ivanov B and Kovalev A 1990 Phys. Reports 194 117
[22] Jiang S, Chung S, Ahlberg M, Frisk A, Khymyn R, Le Q T, Mazraati H, Houshang A, Heinonen O and A kerman J 2024 Nat. Commun. 15 2118
[23] Li Z D, He P B and Liu W M 2014 Chin. Phys. B 23 117502
[24] Mohseni S M, Sani S R, Persson J, Nguyen T N A, Chung S, Pogoryelov Y, Muduli P K, Iacocca E, Eklund A, Dumas R K, Bonetti S, Deac A, Hoefer M A and A kerman J 2013 Science 339 1295
[25] Backes D, Maci‘a F, Bonetti S, Kukreja R, Ohldag H and Kent A D 2015 Phys. Rev. Lett. 115 127205
[26] Maci‘a F, Backes D and Kent A D 2014 Nat. Nanotechnol. 9 992
[27] Giridharan D, Sabareesan P and DanielM2016 Phys. Rev. E 94 032222
[28] Daniel M and Beula J 2008 Phys. Rev. B 77 144416
[29] Li Z D, Cui H, Li Q Y and He P B 2018 Ann. Phys. 388 390
[30] Li Z D, Bao Q L, He P B, Xu T F and Wu B 2020 J. Magn. Magn. Mater. 512 166981
[31] Zhao Y M, Jin X W and Yang Z Y 2023 New J. Phys. 25 113029
[32] Jin X W, Yang Z Y, Liao Z M, Jing G and Yang W L 2024 Phys. Rev. B 109 014414
[33] Yan P, Wang X S and Wang X R 2011 Phys. Rev. Lett. 107 177207
[34] Ma W X 2022 Partial Differ. Equ. Appl. Math. 5 100220
[35] Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F and Van Waeyenberge B 2014 AIP Adv. 4 107133
[36] Hauser C, Richter T, Homonnay N, Eisenschmidt C, Qaid M, Deniz H, Hesse D, Sawicki M, Ebbinghaus S G and Schmidt G 2016 Sci. Rep. 6 20827
[37] Stigloher J, Decker M, Körner H S, Tanabe K, Moriyama T, Taniguchi T, Hata H, Madami M, Gubbiotti G, Kobayashi K, Ono T and Back C H 2016 Phys. Rev. Lett. 117 037204
[38] Mulkers J, Van Waeyenberge B and Milošević M V 2018 Phys. Rev. B 97 104422
[39] Yu W, Lan J, Wu R and Xiao J 2016 Phys. Rev. B 94 140410
[40] Hasegawa A and Tappert F 1973 Appl. Phys. Lett. 23 142
[41] Hasegawa A and Tappert F 1973 Appl. Phys. Lett. 23 171
[42] Chamorro-Posada P and McDonald G S 2003 Opt. Lett. 28 825
[43] Christian J M, McDonald G S, Potton R J and Chamorro-Posada P 2007 Phys. Rev. A 76 033834
[44] Gibbon J D and Eilbeck J C 1972 J. Phys. A 5 L122
[45] Caudrey P J, Eilbeck J C, Gibbon J D and Bullough R K 1973 J. Phys. A 6 L112
[46] Boardman A 1997 Nature 387 854
[47] Maimistov A I 2010 Quantum Electron. 40 756
[48] LIN X G, LIU W J and LEI M 2016 Pramana 86 575
[49] Sánchez-Curto J, Chamorro-Posada P and McDonald G S 2007 Opt. Lett. 32 1126
[50] Sánchez-Curto J, Chamorro-Posada P and McDonald G S 2010 Opt. Lett. 35 1347
[51] Kominis Y and Hizanidis K 2009 Phys. Rev. Lett. 102 133903
[52] Hyun J K, Zhang S and Lauhon L J 2013 Ann. Rev. Mater. Res. 43 451
[53] Wang C T, Liang X F, Zhang Y, Liang X, Zhu Y P, Qin J, Gao Y, Peng B, Sun N X and Bi L 2017 Phys. Rev. B 96 224403
[54] Deka A, Rana B, Anami R, Miura K, Takahashi H, Otani Y and Fukuma Y 2020 Phys. Rev. B 101 174405
[55] Matsukura F, Tokura Y and Ohno H 2015 Nat. Nanotechnol. 10 209
[56] Slonczewski J 1996 J. Magn. Magn. Mater. 159 L1
[57] Berger L 1996 Phys. Rev. B 54 9353
[58] Han J, Zhang P, Hou J T, Siddiqui S A and Liu L 2019 Science 366 1121
[59] Wang Y, Zhu D, Yang Y, Lee K, Mishra R, Go G, Oh S H, Kim D H, Cai K, Liu E, Pollard S D, Shi S, Lee J, Teo K L, Wu Y, Lee K J and Yang H 2019 Science 366 1125
[60] See supplementary material for an animation of a soliton passing through a domain wall.
[61] Porter D G and Donahue M J 2004 J. Appl. Phys. 95 6729
[62] Yuan H Y and Wang X R 2014 Phys. Rev. B 89 054423
[63] Thiele A A 1973 Phys. Rev. Lett. 30 230
[64] Zhang S and Li Z 2004 Phys. Rev. Lett. 93 127204
[65] Vázquez M 2020 Magnetic Nano- and Microwires: Design, Synthesis, Properties and Applications: Woodhead Publishing Series in Electronic and Optical Materials (Elsevier Science)
[66] Bonetti S, Kukreja R, Chen Z, Macià F, Hernàndez J M, Eklund A, Backes D, Frisch J, Katine J, Malm G, Urazhdin S, Kent A D, Stöhr J, Ohldag H and Dürr H A 2015 Nat. Commun. 6 8889
[67] van der Sar T, Casola F, Walsworth R and Yacoby A 2015 Nat. Commun. 6 7886
[68] Dovzhenko Y, Casola F, Schlotter S, Zhou T X, Büttner F, Walsworth R L, Beach G S D and Yacoby A 2018 Nat. Commun. 9 2712
[69] Turenne D, Yaroslavtsev A, Wang X, et al. 2022 Sci. Adv. 8 eabn0523
  • 1. .mp4(89KB)

[1] The N-soliton solutions of the three-component coupled nonlinear Hirota equations based on Riemann-Hilbert method
Xin Wang(王昕) and Zhi-Hui Zhang(张智辉). Chin. Phys. B, 2025, 34(9): 090202.
[2] A novel (2+1)-dimensional complex coupled dispersionless system: Darboux transformation and multisolitons
H. W. A. Riaz and Ji Lin(林机). Chin. Phys. B, 2025, 34(9): 090502.
[3] Normal energy and stretch diffusion in a one-dimensional momentum conserving lattice with nonlinear bounded kinetic energy
Hongbin Chen(陈宏斌), Qin-Yi Zhang(张钦奕), Jiahui Wang(王佳惠), Nianbei Li(李念北), and Jie Chen(陈杰). Chin. Phys. B, 2025, 34(9): 094401.
[4] Dark-gap solitons with mixed nonlinear and linear lattices
Xue-Fei Zhang(张雪菲), Xiao-Yang Wang(王笑阳), Hui-Lian Wei(魏慧莲), and Tian-Fu Xu(徐天赋). Chin. Phys. B, 2025, 34(8): 080303.
[5] Graph neural networks unveil universal dynamics in directed percolation
Ji-Hui Han(韩继辉), Cheng-Yi Zhang(张程义), Gao-Gao Dong(董高高), Yue-Feng Shi(石月凤), Long-Feng Zhao(赵龙峰), and Yi-Jiang Zou(邹以江). Chin. Phys. B, 2025, 34(8): 080702.
[6] Real-time observations of the transition dynamics between multiple nonlinear states in a coherently driven Kerr fiber-loop resonator
Yayu Cao(曹亚昱), Heng Dong(董恒), and Xiankun Yao(姚献坤). Chin. Phys. B, 2025, 34(7): 074206.
[7] Surface solitons in Kerr-type nonlinear media with chirped lattices
Xiaoyang Wang(王笑阳), Huilian Wei(魏慧莲), Xuefei Zhang(张雪菲), and Tianfu Xu(徐天赋). Chin. Phys. B, 2025, 34(6): 060302.
[8] Trajectory equations of interaction and evolution behaviors of a novel multi-soliton to a (2+1)-dimensional shallow water wave model
Xi-Yu Tan(谭茜宇) and Wei Tan(谭伟). Chin. Phys. B, 2025, 34(4): 040202.
[9] Dynamical analysis and localized waves of the n-component nonlinear Schrödinger equation with higher-order effects
Yu Lou(娄瑜) and Guoan Xu(许国安). Chin. Phys. B, 2025, 34(3): 030201.
[10] Pure-quartic soliton molecules in normal fourth-order dispersion regimes based on spectral filtering effect
Han-Yang Shen(申翰阳), Rui-Bo Lan(蓝睿博), Hong-Bin Hu(胡洪彬), Yang Li(李阳), Rui Zhou(周瑞), and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2025, 34(3): 034203.
[11] Excitation threshold of solitons in anharmonic chains
Yi Ming(明燚). Chin. Phys. B, 2025, 34(2): 020501.
[12] Manipulation of gray-ring dark solitons in a two-component Bose gas with tunable soft-core interactions
Qiu-Ling He(何秋玲), Lin-Xue Wang(王林雪), Rui Jin(金瑞), Fang Wang(王芳), Ya-Jun Wang(王雅君), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2025, 34(10): 100306.
[13] Electron-acoustic solitons in multi-species space plasmas: Supersoliton perspectives
Ln Mbuli and Z Mtumela. Chin. Phys. B, 2025, 34(10): 105204.
[14] Darboux transformation, positon solution, and breather solution of the third-order flow Gerdjikov-Ivanov equation
Shuzhi Liu(刘树芝), Ning-Yi Li(李宁逸), Xiaona Dong(董晓娜), and Maohua Li(李茂华). Chin. Phys. B, 2025, 34(1): 010201.
[15] Femtosecond mode-locking and soliton molecule generation based on a GaAs saturable absorber
Chen-Yan Zhang(张辰妍), Xin-He Dou(窦鑫河), Zhen Chen(陈震), Jing-Han Zhao(赵靖涵), Wei Sun(孙薇), Ze-Yu Fan(樊泽宇), Tao Zhang(张涛), Hao Teng(滕浩), and Zhi-Guo Lv(吕志国). Chin. Phys. B, 2025, 34(1): 014205.
No Suggested Reading articles found!