Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 067507    DOI: 10.1088/1674-1056/add24c
SPECIAL TOPIC — Advanced magnonics Prev   Next  

Magnon behavior in YIG film under microwave excitation investigated by Brillouin light scattering

Guofu Xu(徐国服)1, Kang An(安康)1, Wenjun Ma(马文俊)1, Xiling Li(李喜玲)1, C. K. Ong1,2, Chi Zhang(张驰)1,†, and Guozhi Chai(柴国志)1,‡
1 Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China;
2 Department of Physics, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor, Malaysia
Abstract  We utilize conventional wave-vector-resolved Brillouin light scattering technology to investigate the spin wave response in YIG thin films under high-power microwave excitation. By varying the microwave frequency, external bias magnetic field, and in-plane wave vector, in addition to observing the dipole-exchange spin waves excited by parallel parametric pumping, we further observe broadband spin wave excitation within the dipole-exchange spin wave spectrum. This broadband excitation results from the combined effects of parallel and perpendicular parametric pumping, induced by irregularities in the excitation geometry, as well as magnon-magnon scattering arising from the absence of certain spin wave modes. Our findings offer new insights into the mechanisms of energy dissipation and relaxation processes caused by spin wave excitation in magnetic devices operating at high power.
Keywords:  spin wave      parametric excitation      magnon interaction      Brillouin light scattering  
Received:  01 April 2025      Revised:  30 April 2025      Accepted manuscript online:  30 April 2025
PACS:  75.30.Ds (Spin waves)  
  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  78.35.+c (Brillouin and Rayleigh scattering; other light scattering)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52471200, 12174165, and 52201219).
Corresponding Authors:  Chi Zhang, Guozhi Chai     E-mail:  zc@lzu.edu.cn;chaigzh@lzu.edu.cn

Cite this article: 

Guofu Xu(徐国服), Kang An(安康), Wenjun Ma(马文俊), Xiling Li(李喜玲), C. K. Ong, Chi Zhang(张驰), and Guozhi Chai(柴国志) Magnon behavior in YIG film under microwave excitation investigated by Brillouin light scattering 2025 Chin. Phys. B 34 067507

[1] Neusser S and Grundler D 2009 Adv. Mater. 21 2927
[2] Kruglyak V V, Demokritov S O and Grundler D 2010 J. Phys. D: Appl. Phys. 43 264001
[3] Chumak A V, Vasyuchka V I, Serga A A and Hillebrands B 2015 Nat. Phys. 11 453
[4] Rezende S M 2020 Fundamentals of magnonics Vol. 969 (Springer)
[5] Chumak A V, Kabos P, Wu M, Abert C, Adelmann C, Adeyeye A O, Å kerman J, Aliev F G, Anane A, Awad A, et al. 2022 IEEE Transactions on Magnetics 58 1
[6] Schneider T, Serga A A, Leven B, Hillebrands B, Stamps R L and Kostylev M P 2008 Appl. Phys. Lett. 92 022505
[7] Yuan H, Cao Y, Kamra A, Duine R A and Yan P 2022 Phys. Rep. 965 1
[8] Yu T, Luo Z and Bauer G E 2023 Phys. Rep. 1009 1
[9] Bracher T, Pirro P and Hillebrands B 2017 Phys. Rep. 699 1
[10] Schlömann E, Green J and Milano U 1960 J. Appl. Phys. 31 S386
[11] Rezende S M and de Aguiar F M 1990 Proc. IEEE 78 893
[12] Pirro P, Vasyuchka V I, Serga A A and Hillebrands B 2021 Nat. Rev. Mater. 6 1114
[13] De Aguiar F and Rezende S 1986 Phys. Rev. Lett. 56 1070
[14] Azevedo A and Rezende S M 1991 Phys. Rev. Lett. 66 1342
[15] Bozhko D A, Clausen P, Melkov G A, L’vov V S, Pomyalov A, Vasyuchka V I, Chumak A V, Hillebrands B and Serga A A 2017 Phys. Rev. Lett. 118 237201
[16] Bozhko D A, Serga A A, Clausen P, Vasyuchka V I, Heussner F, Melkov G A, Pomyalov A, L’vov V S and Hillebrands B 2016 Nat. Phys. 12 1057
[17] Demokritov S O, Demidov V E, Dzyapko O, Melkov G A, Serga A A, Hillebrands B and Slavin A N 2006 Nature 443 430
[18] Breitbach D, Schneider M, Heinz B, Kohl F, Maskill J, Scheuer L, Serha R O, Brächer T, Lägel B, Dubs C, et al. 2023 Phys. Rev. Lett. 131 156701
[19] Serga A, Hillebrands B, Demokritov S, Slavin A, Wierzbicki P, Vasyuchka V, Dzyapko O and Chumak A 2005 Phys. Rev. Lett. 94 167202
[20] Verba R, Carpentieri M, Finocchio G, Tiberkevich V and Slavin A 2018 Appl. Phys. Lett. 112 042402
[21] Ge X, Verba R, Pirro P, Chumak A V and Wang Q 2024 Appl. Phys. Lett. 124 122413
[22] Ustinov A B, Lähderanta E, Inoue M and Kalinikos B A 2019 IEEE Magnetics Letters 10 1
[23] Wilber W, Wettling W, Kabos P, Patton C and Jantz W 1984 J. Appl. Phys. 55 2533
[24] Sandweg C, Jungfleisch M, Vasyuchka V, Serga A, Clausen P, Schultheiss H, Hillebrands B, Kreisel A and Kopietz P 2010 Rev. Sci. Instrum. 81 073902
[25] Serga A, Sandweg C, Vasyuchka V, Jungfleisch M, Hillebrands B, Kreisel A, Kopietz P and Kostylev M 2012 Phys. Rev. B 86 134403
[26] Demokritov S O, Hillebrands B and Slavin A N 2001 Phys. Rep. 348 441
[27] Sandercock J and Wettling W 1973 Solid State Commun. 13 1729
[28] Eshbach J and Damon R 1960 Phys. Rev. 118 1208
[29] Damon R W and Eshbach J 1961 Journal of Physics and Chemistry of Solids 19 308
[30] Bloembergen N and Damon R 1952 Phys. Rev. 85 699
[31] Damon R W 1953 Rev. Mod. Phys. 25 239
[32] Suhl H 1957 Journal of Physics and Chemistry of Solids 1 209
[33] Morgenthaler F R 1960 J. Appl. Phys. 31 S95
[34] Herring C and Kittel C 1951 Phys. Rev. 81 869
[35] Kalinikos B and Slavin A 1986 J. Phys. C: Solid State Phys. 19 7013
[36] Schultheiss H, Janssens X, van Kampen M, Ciubotaru F, Hermsdoerfer S, Obry B, Laraoui A, Serga A, Lagae L, Slavin A, et al. 2009 Phys. Rev. Lett. 103 157202
[37] Neumann T, Serga A, Vasyuchka V and Hillebrands B 2009 Appl. Phys. Lett. 94 192502
[38] Wang P 2023 Chin. Phys. B 32 037601
  • 1. .docx(14KB)
  • 2. .mp4(1016KB)

  • 3. .mp4(891KB)

  • 4. .mp4(679KB)

  • 5. .mp4(616KB)

[1] Orbital magnetic field effect on spin waves in a triangular lattice tetrahedral antiferromagnetic insulator
Pi-Ye Zhou(周丕烨), Xiao-Hui Li(李晓慧), and Yuan Wan(万源). Chin. Phys. B, 2025, 34(6): 067501.
[2] Strain-manipulated dispersion characteristics of magnonic crystals with Dzyaloshinskii-Moriya interaction and applications on spin-wave devices
Chuhan Zhou(周楚涵), Xiaotian Jiao(焦晓天), Jiaxi Xu(徐佳熙), Zhaonian Jin(金兆年), Lin Chen(陈琳), and Zhikuo Tao(陶志阔). Chin. Phys. B, 2025, 34(2): 027501.
[3] Spin wave resonance frequency in bilayer ferromagnetic films with the biquadratic exchange interaction
Xiaojie Zhang(张晓洁), Yuting Wang(王雨汀), Yanqiu Chang(常艳秋), Huan Wang(王焕), Jianhong Rong(荣建红), and Guohong Yun(云国宏). Chin. Phys. B, 2024, 33(9): 097601.
[4] Consistency between domain wall oscillation modes and spin wave modes in nanostrips
Xinwei Dong(董新伟) and Zhenjiang Wu(吴振江). Chin. Phys. B, 2024, 33(6): 067502.
[5] Interacting topological magnons in a checkerboard ferromagnet
Heng Zhu(朱恒), Hongchao Shi(施洪潮), Zhengguo Tang(唐政国), and Bing Tang(唐炳). Chin. Phys. B, 2024, 33(3): 037503.
[6] Tunable dispersion relations manipulated by strain in skyrmion-based magnonic crystals
Zhao-Nian Jin(金兆年), Xuan-Lin He(何宣霖), Chao Yu(于超), Henan Fang(方贺男), Lin Chen(陈琳), and Zhi-Kuo Tao(陶志阔). Chin. Phys. B, 2024, 33(1): 017501.
[7] Magnonic band-pass and band-stop filters with structurally modulated waveguides
Lai-He Feng(冯来和), Mang-Yuan Ma(马莽原), Zhi-Hua Liu(刘智华), Kai-Le Xie(解凯乐), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2023, 32(6): 067503.
[8] Spin pumping by higher-order dipole-exchange spin-wave modes
Peng Wang(王鹏). Chin. Phys. B, 2023, 32(3): 037601.
[9] Eigenstates and temporal dynamics in cavity optomagnonics
Yun-Jing Ding(丁云静) and Yang Xiao(肖杨). Chin. Phys. B, 2023, 32(10): 107601.
[10] Asymmetric scattering behaviors of spin wave dependent on magnetic vortex chirality
Xue-Feng Zhang(张雪枫), Je-Ho Shim(沈帝虎), Xiao-Ping Ma(马晓萍), Cheng Song(宋成), Haiming Yu(于海明), and Hong-Guang Piao(朴红光). Chin. Phys. B, 2023, 32(10): 107501.
[11] Nonlinear three-magnon scattering in low-damping La0.67Sr0.33MnO3 thin films
Yuelin Zhang(张跃林), Lutong Sheng(盛路通), Jilei Chen(陈济雷), Jie Wang(王婕), Zengtai Zhu(朱增泰), Rundong Yuan(袁润东), Jingdi Lu(鲁京迪), Hanchen Wang(王涵晨), Sijie Hao(郝思洁), Peng Chen(陈鹏), Guoqiang Yu(于国强), Xiufeng Han(韩秀峰), and Haiming Yu(于海明). Chin. Phys. B, 2023, 32(10): 107505.
[12] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[13] Angle-dependent spin wave spectra of permalloy ring arrays
Shuxuan Wu(吴书旋), Zengtai Zhu(朱增泰), Yunxu Ma(马云旭), Jinwu Wei(魏晋武), Senfu Zhang(张森富), Jianbo Wang(王建波), and Qingfang Liu(刘青芳). Chin. Phys. B, 2022, 31(11): 117505.
[14] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[15] Magnon bands in twisted bilayer honeycomb quantum magnets
Xingchuan Zhu(朱兴川), Huaiming Guo(郭怀明), and Shiping Feng(冯世平). Chin. Phys. B, 2021, 30(7): 077505.
No Suggested Reading articles found!