Magnon behavior in YIG film under microwave excitation investigated by Brillouin light scattering
Guofu Xu(徐国服)1, Kang An(安康)1, Wenjun Ma(马文俊)1, Xiling Li(李喜玲)1, C. K. Ong1,2, Chi Zhang(张驰)1,†, and Guozhi Chai(柴国志)1,‡
1 Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China; 2 Department of Physics, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor, Malaysia
Abstract We utilize conventional wave-vector-resolved Brillouin light scattering technology to investigate the spin wave response in YIG thin films under high-power microwave excitation. By varying the microwave frequency, external bias magnetic field, and in-plane wave vector, in addition to observing the dipole-exchange spin waves excited by parallel parametric pumping, we further observe broadband spin wave excitation within the dipole-exchange spin wave spectrum. This broadband excitation results from the combined effects of parallel and perpendicular parametric pumping, induced by irregularities in the excitation geometry, as well as magnon-magnon scattering arising from the absence of certain spin wave modes. Our findings offer new insights into the mechanisms of energy dissipation and relaxation processes caused by spin wave excitation in magnetic devices operating at high power.
(Brillouin and Rayleigh scattering; other light scattering)
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52471200, 12174165, and 52201219).
Corresponding Authors:
Chi Zhang, Guozhi Chai
E-mail: zc@lzu.edu.cn;chaigzh@lzu.edu.cn
Cite this article:
Guofu Xu(徐国服), Kang An(安康), Wenjun Ma(马文俊), Xiling Li(李喜玲), C. K. Ong, Chi Zhang(张驰), and Guozhi Chai(柴国志) Magnon behavior in YIG film under microwave excitation investigated by Brillouin light scattering 2025 Chin. Phys. B 34 067507
[1] Neusser S and Grundler D 2009 Adv. Mater. 21 2927 [2] Kruglyak V V, Demokritov S O and Grundler D 2010 J. Phys. D: Appl. Phys. 43 264001 [3] Chumak A V, Vasyuchka V I, Serga A A and Hillebrands B 2015 Nat. Phys. 11 453 [4] Rezende S M 2020 Fundamentals of magnonics Vol. 969 (Springer) [5] Chumak A V, Kabos P, Wu M, Abert C, Adelmann C, Adeyeye A O, Å kerman J, Aliev F G, Anane A, Awad A, et al. 2022 IEEE Transactions on Magnetics 58 1 [6] Schneider T, Serga A A, Leven B, Hillebrands B, Stamps R L and Kostylev M P 2008 Appl. Phys. Lett. 92 022505 [7] Yuan H, Cao Y, Kamra A, Duine R A and Yan P 2022 Phys. Rep. 965 1 [8] Yu T, Luo Z and Bauer G E 2023 Phys. Rep. 1009 1 [9] Bracher T, Pirro P and Hillebrands B 2017 Phys. Rep. 699 1 [10] Schlömann E, Green J and Milano U 1960 J. Appl. Phys. 31 S386 [11] Rezende S M and de Aguiar F M 1990 Proc. IEEE 78 893 [12] Pirro P, Vasyuchka V I, Serga A A and Hillebrands B 2021 Nat. Rev. Mater. 6 1114 [13] De Aguiar F and Rezende S 1986 Phys. Rev. Lett. 56 1070 [14] Azevedo A and Rezende S M 1991 Phys. Rev. Lett. 66 1342 [15] Bozhko D A, Clausen P, Melkov G A, L’vov V S, Pomyalov A, Vasyuchka V I, Chumak A V, Hillebrands B and Serga A A 2017 Phys. Rev. Lett. 118 237201 [16] Bozhko D A, Serga A A, Clausen P, Vasyuchka V I, Heussner F, Melkov G A, Pomyalov A, L’vov V S and Hillebrands B 2016 Nat. Phys. 12 1057 [17] Demokritov S O, Demidov V E, Dzyapko O, Melkov G A, Serga A A, Hillebrands B and Slavin A N 2006 Nature 443 430 [18] Breitbach D, Schneider M, Heinz B, Kohl F, Maskill J, Scheuer L, Serha R O, Brächer T, Lägel B, Dubs C, et al. 2023 Phys. Rev. Lett. 131 156701 [19] Serga A, Hillebrands B, Demokritov S, Slavin A, Wierzbicki P, Vasyuchka V, Dzyapko O and Chumak A 2005 Phys. Rev. Lett. 94 167202 [20] Verba R, Carpentieri M, Finocchio G, Tiberkevich V and Slavin A 2018 Appl. Phys. Lett. 112 042402 [21] Ge X, Verba R, Pirro P, Chumak A V and Wang Q 2024 Appl. Phys. Lett. 124 122413 [22] Ustinov A B, Lähderanta E, Inoue M and Kalinikos B A 2019 IEEE Magnetics Letters 10 1 [23] Wilber W, Wettling W, Kabos P, Patton C and Jantz W 1984 J. Appl. Phys. 55 2533 [24] Sandweg C, Jungfleisch M, Vasyuchka V, Serga A, Clausen P, Schultheiss H, Hillebrands B, Kreisel A and Kopietz P 2010 Rev. Sci. Instrum. 81 073902 [25] Serga A, Sandweg C, Vasyuchka V, Jungfleisch M, Hillebrands B, Kreisel A, Kopietz P and Kostylev M 2012 Phys. Rev. B 86 134403 [26] Demokritov S O, Hillebrands B and Slavin A N 2001 Phys. Rep. 348 441 [27] Sandercock J and Wettling W 1973 Solid State Commun. 13 1729 [28] Eshbach J and Damon R 1960 Phys. Rev. 118 1208 [29] Damon R W and Eshbach J 1961 Journal of Physics and Chemistry of Solids 19 308 [30] Bloembergen N and Damon R 1952 Phys. Rev. 85 699 [31] Damon R W 1953 Rev. Mod. Phys. 25 239 [32] Suhl H 1957 Journal of Physics and Chemistry of Solids 1 209 [33] Morgenthaler F R 1960 J. Appl. Phys. 31 S95 [34] Herring C and Kittel C 1951 Phys. Rev. 81 869 [35] Kalinikos B and Slavin A 1986 J. Phys. C: Solid State Phys. 19 7013 [36] Schultheiss H, Janssens X, van Kampen M, Ciubotaru F, Hermsdoerfer S, Obry B, Laraoui A, Serga A, Lagae L, Slavin A, et al. 2009 Phys. Rev. Lett. 103 157202 [37] Neumann T, Serga A, Vasyuchka V and Hillebrands B 2009 Appl. Phys. Lett. 94 192502 [38] Wang P 2023 Chin. Phys. B 32 037601
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.