Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 100307    DOI: 10.1088/1674-1056/add90c
GENERAL Prev   Next  

Antichiral edge states in a square lattice

Peng-Yu Guo(郭鹏宇)1, Wei Li(黎炜)1, Junhui Hu(胡君辉)1, and Hai-Xiao Wang(王海啸)1,2,†
1 School of Physical Science and Technology, Guangxi Normal University, Guilin 541004, China;
2 School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
Abstract  Recent advances in topological phases with broken time-reversal symmetry unveil a novel gapless topological phase, i.e., antichiral edge state, featuring co-propagating along the parallel edges. However, to date, such antichiral edge states are only realized in the modified Haldane model, which are based on the honeycomb lattice. Here, we realize the antichiral edge states in a square-lattice tight-binding model with complex nearest-neighbor coupling and both positive and negative next-nearest-neighbor couplings. In contrast to previous proposals, the complex nearest-neighbor coupling breaks the time-reversal symmetry, and the negative next nearest-neighbor coupling shift two Dirac points in energy. We also propose a possible scheme to realize our model with the assistance of acoustic metamaterials. The existence of antichiral edge states is revealed through full-wave simulation of the band structure and acoustic fields excited by a point source.
Keywords:  Haldane model      edge states      acoustic metamaterials  
Received:  19 April 2025      Revised:  13 May 2025      Accepted manuscript online:  15 May 2025
PACS:  03.65.Vf (Phases: geometric; dynamic or topological)  
  05.30.Rt (Quantum phase transitions)  
  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12474432), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2023GXNSFAA026048), and the Start-up Funding from Ningbo University.
Corresponding Authors:  Hai-Xiao Wang     E-mail:  wanghaixiao@nbu.edu.cn

Cite this article: 

Peng-Yu Guo(郭鹏宇), Wei Li(黎炜), Junhui Hu(胡君辉), and Hai-Xiao Wang(王海啸) Antichiral edge states in a square lattice 2025 Chin. Phys. B 34 100307

[1] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[2] Haldane F D M and Raghu S 2008 Phys. Rev. Lett. 100 13904
[3] Wang Z, Chong Y D, Joannopoulos J D and Soljačić M 2008 Phys. Rev. Lett. 100 13905
[4] Wang Z, Chong Y, Joannopoulos J D and Soljačić M 2009 Nature 461 772
[5] Yang Z, Gao F, Shi X, Lin X, Gao Z, Chong Y and Zhang B 2015 Phys. Rev. Lett. 114 114301
[6] Khanikaev A B, Fleury R, Mousavi S H and Alù A 2015 Nat. Commun. 6 8260
[7] Xiao M, Chen W J, He W Y and Chan C T 2015 Nat. Phys. 11 920
[8] Ni X, He C, Sun X C, Liu X, Lu M H, Feng L and Chen Y F 2015 New J. Phys. 17 53016
[9] Ding Y, Peng Y, Zhu Y, Fan X, Yang J, Liang B, Zhu X, Wan X and Cheng J 2019 Phys. Rev. Lett. 122 14302
[10] Wang P, Lu L and Bertoldi K 2015 Phys. Rev. Lett. 115 104302
[11] Nash L M, Kleckner D, Read A, Vitelli V, Turner A M and Irvine W T M 2015 Proc. Natl. Acad. Sci. USA 112 14495
[12] Wang Y T, Luan P G and Zhang S 2015 New J. Phys. 17 73031
[13] Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D and Esslinger T 2014 Nature 515 237
[14] Colomés E and Franz M 2018 Phys. Rev. Lett. 120 86603
[15] Zhou P, Liu G G, Yang Y, Hu Y H, Ma S, Xue H, Wang Q, Deng L and Zhang B 2020 Phys. Rev. Lett. 125 263603
[16] Chen J, Liang W and Li Z Y 2020 Phys. Rev. B 101 214102
[17] Wang H, Xie B and Ren W 2023 Laser & Photon. Rev. 18 2300764
[18] Wang J, Ji X, Shi Z, Zhang Y, Li H, Li Y, Deng Y and Xie K 2023 Eur. Phys. J. Plus 138 1149
[19] Wu H, Xu K, Shi Y, Chen P, Poo Y, Liu S andWu R X 2024 Appl. Phys. Lett. 124 31101
[20] Xi X, Yan B, Yang L, Meng Y, Zhu Z X, Chen J M, Wang Z, Zhou P, Shum P P, Yang Y, Chen H, Mandal S, Liu G G, Zhang B and Gao Z 2023 Nat. Commun. 14 1991
[21] Liu J W, Shi F L, Shen K, Chen X D, Chen K, Chen W J and Dong J W 2023 Nat. Commun. 14 2027
[22] Xie L, Jin L and Song Z 2023 Sci. Bull. 68 255
[23] Chen J and Li Z Y 2022 Opto-Electron. Sci. 1 220001
[24] Chen J and Li Z Y 2022 Phys. Rev. Lett. 128 257401
[25] Yu L, Xue H and Zhang B 2021 J. Appl. Phys. 129 235103
[26] Cheng X, Chen J, Zhang L, Xiao L and Jia S 2021 Phys. Rev. B 104 L081401
[27] Wang Y, Liang B and Cheng J 2024 Phys. Rev. Appl. 22 044054
[28] Yang Y, Zhu D, Hang Z and Chong Y 2021 Sci. China- Phys. Mech. Astron. 64 257011
[29] Jiang J H 2012 Phys. Rev. A 85 033640
[30] Yang Z, Gao F, Shi X and Zhang B 2016 New J. Phys. 18 125003
[31] Sun K, Liu W V, Hemmerich A and Das Sarma S 2012 Nat. Phys. 8 67
[32] Wang H X, Lin Z K, Jiang B, Guo G Y and Jiang J H 2020 Phys. Rev. Lett. 125 146401
[33] Qi Y, Qiu C, Xiao M, He H, Ke M and Liu Z 2020 Phys. Rev. Lett. 124 206601
[34] Ryu S and Hatsugai Y 2002 Phys. Rev. Lett. 89 77002
[35] Ma J, Zhou T, Tang M, Li H, Zhang Z, Xi X, Martin M, Baron T, Liu H, Zhang Z, Chen S, Sun X, Ganeshan S, Sun K and Das Sarma S 2025 Phys. Rev. Lett. 110 180403
[1] Topological transmission and topological corner states combiner in all-dielectric honeycomb valley photonic crystals
Ming Sun(孙铭), Xiao-Fang Xu(许孝芳), Yun-Feng Shen(沈云峰), Ya-Qing Chang(常雅箐), and Wen-Ji Zhou(周文佶). Chin. Phys. B, 2025, 34(3): 034206.
[2] Topological rainbow trapping of sound waves in synthesized three-dimensional space for square lattice
Jie-Yu Lu(卢杰煜), Shi-Feng Li(李石峰), Xin Li(李鑫), Xin-Ye Zou(邹欣晔), and Jian-Chun Cheng(程建春). Chin. Phys. B, 2025, 34(2): 024302.
[3] Phase diagram and quench dynamics of a periodically driven Haldane model
Minxuan Ren(任民烜), Han Yang(杨焓), and Mingyuan Sun(孙明远). Chin. Phys. B, 2024, 33(9): 090309.
[4] Topological edge and corner states of valley photonic crystals with zipper-like boundary conditions
Yun-Feng Shen(沈云峰), Xiao-Fang Xu(许孝芳), Ming Sun(孙铭), Wen-Ji Zhou(周文佶), and Ya-Jing Chang(常雅箐). Chin. Phys. B, 2024, 33(4): 044203.
[5] Helicity-dependent photoconductance of the edge states in the topological insulator Bi2Te3
Yuchao Zhou(周宇超), Jinling Yu(俞金玲), Yonghai Chen(陈涌海), Yunfeng Lai(赖云锋), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(8): 087102.
[6] Ultra-broadband acoustic ventilation barrier based on multi-cavity resonators
Yu-Wei Xu(许雨薇), Yi-Jun Guan(管义钧), Cheng-Hao Wu(吴成昊), Yong Ge(葛勇), Qiao-Rui Si(司乔瑞), Shou-Qi Yuan(袁寿其), and Hong-Xiang Sun(孙宏祥). Chin. Phys. B, 2023, 32(12): 124303.
[7] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[8] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
[9] Quantum transport signatures of non-trivial topological edge states in a ring-shaped Su-Schrieffer-Heeger double-chain system
Cheng-Zhi Ye(叶成芝), Lan-Yun Zhang(张蓝云), and Hai-Bin Xue(薛海斌). Chin. Phys. B, 2022, 31(2): 027304.
[10] Change-over switch for quantum states transfer with topological channels in a circuit-QED lattice
Liu-Yong Cheng(程留永), Li-Na Zheng(郑黎娜), Ruixiang Wu(吴瑞祥), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(2): 020305.
[11] Topological photonic states in gyromagnetic photonic crystals: Physics, properties, and applications
Jianfeng Chen(陈剑锋) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(11): 114207.
[12] Efficient and stable wireless power transfer based on the non-Hermitian physics
Chao Zeng(曾超), Zhiwei Guo(郭志伟), Kejia Zhu(祝可嘉), Caifu Fan(范才富), Guo Li(李果), Jun Jiang(江俊), Yunhui Li(李云辉), Haitao Jiang(江海涛), Yaping Yang(羊亚平), Yong Sun(孙勇), and Hong Chen(陈鸿). Chin. Phys. B, 2022, 31(1): 010307.
[13] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[14] Quantum dynamics on a lossy non-Hermitian lattice
Li Wang(王利), Qing Liu(刘青), and Yunbo Zhang(张云波). Chin. Phys. B, 2021, 30(2): 020506.
[15] Erratum to “Floquet bands and photon-induced topological edge states of graphene nanoribbons”
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(11): 119901.
No Suggested Reading articles found!