Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 090502    DOI: 10.1088/1674-1056/adceff
GENERAL Prev   Next  

A novel (2+1)-dimensional complex coupled dispersionless system: Darboux transformation and multisolitons

H. W. A. Riaz† and Ji Lin(林机)‡
Department of Physics, Zhejiang Normal University, Jinhua 321004, China
Abstract  This study presents a (2+1)-dimensional complex coupled dispersionless system. A Lax pair is proposed, and the Darboux transformation is employed to construct multisoliton solutions. These solutions exhibit a range of wave phenomena, including bright and dark solitons, S-shaped formations, parabolic profiles, and periodic wave patterns. Additionally, it is shown that the system is equivalent to the sine-Gordon equation and the negative flow of the modified Korteweg-de Vries hierarchy through appropriate transformations.
Keywords:  integrable systems      Darboux transformation      solitons  
Received:  12 March 2025      Revised:  03 April 2025      Accepted manuscript online:  22 April 2025
PACS:  05.45.Yv (Solitons)  
  03.30.Kk  
  02.30.Jr (Partial differential equations)  
Corresponding Authors:  H. W. A. Riaz, Ji Lin     E-mail:  wajahat@zjnu.edu.cn;linji@zjnu.edu.cn

Cite this article: 

H. W. A. Riaz and Ji Lin(林机) A novel (2+1)-dimensional complex coupled dispersionless system: Darboux transformation and multisolitons 2025 Chin. Phys. B 34 090502

[1] Kivshar Y S and Agrawal G P 2003 Optical solitons: from fibers to photonic crystals (Academic Press)
[2] Malomed B A 2014 The Sine-Gordon Model and Its Applications: From Pendula and Josephson Junctions to Gravity and High-Energy Physics 1-30
[3] Ablowitz M J and Clarkson P A 1991 Solitons, nonlinear evolution equations and inverse scattering, Vol. 149 (Cambridge University Press)
[4] Wang D S, Zhu C and Zhu X 2025 J. Differ. Equ. 416 642
[5] Zhang G and Yan Z 2020 Physica D 402 132170
[6] Ma X and Zhu J 2023 Stud. Appl. Math. 151 676
[7] Liu S, Tian B and Wang M 2021 Eur. Phys. J. Plus 136 1
[8] Xu G q 2019 Appl. Math. Lett. 97 81
[9] Konno K and Wadati M 1975 Prog. Theor. Phys. 53 1652
[10] Gao X Y, Guo Y J and Shan W R 2022 Chaos, Solitons and Fractals 162 112486
[11] Xie W K and Fan F C 2023 J. Math. Anal. Appl. 525 127251
[12] Belokolos E D, Bobenko A I, Enolskii V Z, Its A R and Matveev V B 1994 Algebro-geometric approach to nonlinear integrable equations, Vol. 550 (Springer-Verlag)
[13] Moretlo T, Adem A R and Muatjetjeja B 2022 Commun. Nonlinear Sci. Numer. Simul. 106 106072
[14] Yao Y, Yi H, Zhang X and Ma G 2023 Chin. Phys. Lett. 40 100503
[15] Shao H and Sudao B 2023 Chin. Phys. B 32 050204
[16] Matveev V B and Salle M A 1991 Darboux Transformations and Solitons (Springer Berlin Heidelberg)
[17] Riaz H W A, Lin J and Wang J 2024 Phys. Lett. A 528 130060
[18] Riaz H W A and Lin J 2024 Appl. Math. Lett. 158 109217
[19] Wen X Y, Lin Z and Wang D S 2024 Phys. Rev. E 109 044215
[20] Takasaki K and Takebe T 1995 Rev. Math. Phys. 7 743
[21] Calderbank D M and Kruglikov B 2021 Commun. Math. Phys. 382 1811
[22] Konno K and Oono H 1994 J. Phys. Soc. Jpn. 63 377
[23] Kakuhata H and Konno K 1996 J. Phys. Soc. Jpn. 65 340
[24] Kakuhata H and Konno K 1999 J. Phys. Soc. Jpn. 68 757
[25] Kotlyarov V P 1994 J. Phys. Soc. Jpn. 63 3535
[26] Shen S, Feng B F and Ohta Y 2016 Stud. Appl. Math. 136 64
[27] Riaz H W A and ul Hassan M 2018 J. Math. Anal. Appl. 458 1639
[28] Eren K and Ersoy S 2023 Complex Var. Elliptic Equ. 68 1984
[29] Wang G, Yang K, Gu H, Guan F and Kara A 2020 Nucl. Phys. B 953 114956
[30] Anco S C and Wolf T 2005 J. Nonllinear Math. Phys. 12 13
[31] Gelfand I, Gelfand S, Retakh V and Wilson R L 2005 Adv. Math. 193 56
[32] Pogrebkov A K 2014 Theor. Math. Phys. 181 1585
[1] Dark-gap solitons with mixed nonlinear and linear lattices
Xue-Fei Zhang(张雪菲), Xiao-Yang Wang(王笑阳), Hui-Lian Wei(魏慧莲), and Tian-Fu Xu(徐天赋). Chin. Phys. B, 2025, 34(8): 080303.
[2] Prolongation structure and Darboux transformation of nonlinear mixed gas equations
Lixiu Wang(王立秀) and Yangjie Jia(加羊杰). Chin. Phys. B, 2025, 34(7): 070201.
[3] Real-time observations of the transition dynamics between multiple nonlinear states in a coherently driven Kerr fiber-loop resonator
Yayu Cao(曹亚昱), Heng Dong(董恒), and Xiankun Yao(姚献坤). Chin. Phys. B, 2025, 34(7): 074206.
[4] Surface solitons in Kerr-type nonlinear media with chirped lattices
Xiaoyang Wang(王笑阳), Huilian Wei(魏慧莲), Xuefei Zhang(张雪菲), and Tianfu Xu(徐天赋). Chin. Phys. B, 2025, 34(6): 060302.
[5] Trajectory equations of interaction and evolution behaviors of a novel multi-soliton to a (2+1)-dimensional shallow water wave model
Xi-Yu Tan(谭茜宇) and Wei Tan(谭伟). Chin. Phys. B, 2025, 34(4): 040202.
[6] Dynamical analysis and localized waves of the n-component nonlinear Schrödinger equation with higher-order effects
Yu Lou(娄瑜) and Guoan Xu(许国安). Chin. Phys. B, 2025, 34(3): 030201.
[7] Excitation threshold of solitons in anharmonic chains
Yi Ming(明燚). Chin. Phys. B, 2025, 34(2): 020501.
[8] Manipulation of gray-ring dark solitons in a two-component Bose gas with tunable soft-core interactions
Qiu-Ling He(何秋玲), Lin-Xue Wang(王林雪), Rui Jin(金瑞), Fang Wang(王芳), Ya-Jun Wang(王雅君), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2025, 34(10): 100306.
[9] Electron-acoustic solitons in multi-species space plasmas: Supersoliton perspectives
Ln Mbuli and Z Mtumela. Chin. Phys. B, 2025, 34(10): 105204.
[10] Darboux transformation, positon solution, and breather solution of the third-order flow Gerdjikov-Ivanov equation
Shuzhi Liu(刘树芝), Ning-Yi Li(李宁逸), Xiaona Dong(董晓娜), and Maohua Li(李茂华). Chin. Phys. B, 2025, 34(1): 010201.
[11] Dynamics of fundamental and double-pole breathers and solitons for a nonlinear Schrödinger equation with sextic operator under non-zero boundary conditions
Luyao Zhang(张路瑶) and Xiyang Xie(解西阳). Chin. Phys. B, 2024, 33(9): 090207.
[12] An integrable generalization of the Fokas-Lenells equation: Darboux transformation, reduction and explicit soliton solutions
Jiao Wei(魏姣), Xianguo Geng(耿献国), and Xin Wang(王鑫). Chin. Phys. B, 2024, 33(7): 070202.
[13] Asymptotic analysis on bright solitons and breather solutions of a generalized higher-order nonlinear Schrödinger equation in an optical fiber or a planar waveguide
Xin Zhao(赵鑫), Zhong Du(杜仲), Li-Jian Zhou(周立俭), Rong-Xiang Liu(刘荣香), and Xu-Hu Wang(王绪虎). Chin. Phys. B, 2024, 33(11): 110204.
[14] Effective regulation of the interaction process among three optical solitons
Houhui Yi(伊厚会), Xiaofeng Li(李晓凤), Junling Zhang(张俊玲), Xin Zhang(张鑫), and Guoli Ma(马国利). Chin. Phys. B, 2024, 33(10): 100502.
[15] Influence of the initial parameters on soliton interaction in nonlinear optical systems
Xinyi Zhang(张昕仪) and Ye Wu(吴晔). Chin. Phys. B, 2023, 32(7): 070505.
No Suggested Reading articles found!