|
|
|
Dynamical behaviors of a multifunctional neural circuit |
| Xiao-Hong Gao(高晓红)1,†, Kai-Long Zhu(朱凯龙)2, and Fei-Fei Yang(杨飞飞)2 |
1 College of New Energy, Longdong University, Qingyang 745000, China; 2 College of Artificial Intelligence and Computer Science, Xi'an University of Science and Technology, Xi'an 710054, China |
|
|
|
|
Abstract Biological neurons exhibit a double-membrane structure and perform specialized functions. Replicating the double-membrane architecture in artificial neurons to mimic biological neuronal functions is a compelling research challenge. In this study, we propose a multifunctional neural circuit composed of two capacitors, two linear resistors, a phototube cell, a nonlinear resistor, and a memristor. The phototube and charge-controlled memristor serve as sensors for external light and electric field signals, respectively. By applying Kirchhoff's and Helmholtz's laws, we derive the system's nonlinear dynamical equations and energy function. We further investigate the circuit's dynamics using methods from nonlinear dynamics. Our results show that the circuit can exhibit both periodic and chaotic patterns under stimulation by external light and electric fields.
|
Received: 19 July 2025
Revised: 27 August 2025
Accepted manuscript online: 28 August 2025
|
|
PACS:
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
| Fund: Project supported by the Gansu Provincial Department of Education University Teacher Innovation Fund Project (Grant No. 2024A-168), the Qingyang Science and Technology Plan Project (Grant No. QY-STK-2024B-193), and the Horizontal Research Project of Longdong University (Grant No. HXZK2422). |
Corresponding Authors:
Xiao-Hong Gao
E-mail: gaoxh0219@126.com
|
Cite this article:
Xiao-Hong Gao(高晓红), Kai-Long Zhu(朱凯龙), and Fei-Fei Yang(杨飞飞) Dynamical behaviors of a multifunctional neural circuit 2025 Chin. Phys. B 34 090503
|
[1] Levi T, Khoyratee F, Saïghi S and Ikeuchi Y 2018 Artif. Life Robot. 23 10 [2] Hayati M, Nouri M and Haghiri S 2015 IEEE Trans. Circuits Syst. I 62 1805 [3] Brette R and Gerstner W 2005 J. Neurophysiol. 94 3637 [4] Hindmarsh J L and Rose R M 1982 Nature 296 162 [5] Chay T R 1985 Physica D 16 233 [6] Izhikevich E M 2003 IEEE Trans. Neural Netw. 14 1569 [7] Muni S S, Fatoyinbo H O and Ghosh I 2022 Int. J. Bifurcation Chaos 32 2230020 [8] Liu Y, XuW, Ma J, Alzahrani F and Hobiny A 2020 Front. Inf. Technol. Electron. Eng. 21 1387 [9] Xu Y, Guo Y, Ren G and Ma J 2020 Appl. Math. Comput. 385 125427 [10] Guo Y, Zhou P, Yao Z and Ma J 2021 Nonlinear Dyn. 105 3603 [11] Song X and Yang F 2024 Phys. Scr. 99 125247 [12] Yang F, Guo Q, Ren G and Ma J 2024 J. Biol. Phys. 50 271 [13] Xu Y, Liu M, Zhu Z and Ma J 2020 Chin. Phys. B 29 098704 [14] Xie Y, Ye Z, Li X, Wang X and Jia Y 2024 Cogn. Neurodyn. 18 1989 [15] Yang F, Han Z, Ren G, Guo Q and Ma J 2024 Eur. Phys. J. Plus 139 534 [16] Wu F, Hu X and Ma J 2022 Appl. Math. Comput. 432 127366 [17] Yang F, Xu Y and Ma J 2023 Chaos 33 023110 [18] Yang F, Ren G and Tang J 2023 Nonlinear Dyn. 111 21917 [19] Song X and Yang F 2025 J. Theor. Biol. 599 112034 [20] Guo Y, Wu F, Yang F and Ma J 2023 Chaos 33 113106 [21] Yang F, Song X and Yu Z 2024 Chaos Solitons Fractals 188 115496 [22] Wan J, Wu F, Ma J and Wang W 2024 Chin. Phys. B 33 050504 [23] Yang F, Song X and Yu Z 2025 Nonlinear Dyn. 113 7213 [24] Yu Z, Zhu K, Wang Y and Yang F 2025 Chaos Solitons Fractals 194 116233 [25] Yang F, Song X and Xu Y 2025 Chaos Solitons Fractals 199 116740 [26] Mao Y, Dong Y, Lu Z, Xiang C, Wang J and Liang Y 2025 Chaos Solitons Fractals 195 116279 [27] Xu Q, Wang Y, Iu H H C, Wang N and Bao H 2023 IEEE Trans. Circuits Syst. I 70 3130 [28] Lin H, Wang C, Sun Y and Yao W 2020 Nonlinear Dyn. 100 3667 [29] Park H, Han J K, Yim S, Shin D H, Park T W, Woo K S, Lee S H, Cho J M, Kim H W, Park T and Hwang C S 2025 Adv. Mater. 37 2412549 [30] Chen Y, Lai Q, Zhang Y, Erkan U and Toktas A 2024 Nonlinear Dyn. 112 8603 [31] Zhou L, Lin H and Tan F 2024 Neurocomputing 577 127384 [32] Bao B, Hu J, Cai J, Zhang X and Bao H 2023 Nonlinear Dyn. 111 3765 [33] Liu B, Peng X and Li C 2024 AEU-Int. J. Electron. Commun. 178 155283 [34] Ma T, Mou J and Chen W 2025 Chaos Solitons Fractals 198 116537 [35] Cao H, Wang Y, Banerjee S, Cao Y and Mou J 2024 Chaos Solitons Fractals 179 114466 [36] Ramakrishnan B, Mehrabbeik M, Parastesh F, Rajagopal K and Jafari S 2022 Electronics 11 153 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|