Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 060302    DOI: 10.1088/1674-1056/adc083
GENERAL Prev   Next  

Surface solitons in Kerr-type nonlinear media with chirped lattices

Xiaoyang Wang(王笑阳), Huilian Wei(魏慧莲), Xuefei Zhang(张雪菲), and Tianfu Xu(徐天赋)†
Hebei Key Laboratory of Microstructural Material Physics, School of Science, Yanshan University, Qinhuangdao 066004, China
Abstract  The existence and stability of the fundamental, multi-peak, and twisted solitons in Kerr nonlinear media with chirped (amplitude-modulated) lattices are reported. We discover that the chirp rate and lattice depth can dramatically change the existence domain of solitons, the energy flow of solitons increases with increasing chirp rate or decreasing lattice depth. We also analyze how the chirp rate and lattice depth affect the stability of solitons. The stable domains of fundamental solitons and twisted solitons exhibit a multi-window distribution, while multi-peak solitons are unstable throughout the entire existence domain.
Keywords:  surface solitons      Kerr nonlinearity      chirped lattices  
Received:  20 December 2024      Revised:  11 February 2025      Accepted manuscript online:  14 March 2025
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  42.50.Md (Optical transient phenomena: quantum beats, photon echo, free-induction decay, dephasings and revivals, optical nutation, and self-induced transparency)  
  43.25.Rq (Solitons, chaos)  
Fund: Project supported by the Science and Technology Project of Hebei Education Department, China (Grant No. ZD2020200) and the Innovation Capability Improvement Project of Hebei Province, China (Grant No. 22567605H).
Corresponding Authors:  Tianfu Xu     E-mail:  tfxu@ysu.edu.cn

Cite this article: 

Xiaoyang Wang(王笑阳), Huilian Wei(魏慧莲), Xuefei Zhang(张雪菲), and Tianfu Xu(徐天赋) Surface solitons in Kerr-type nonlinear media with chirped lattices 2025 Chin. Phys. B 34 060302

[1] Kartashov Y V, Astrakharchik G E, Malomed B A and Torner L 2019 Nat. Rev. Phys. 1 185
[2] Mihalache D 2021 Rom. Rep. Phys. 73 403
[3] Malomed B A, Mihalache D, Wise F and Torner L 2005 J. Opt. B: Quantum Semiclassical Opt. 7 R53
[4] Kivshar Y S and Malomed B A 1989 Rev. Mod. Phys. 61 763
[5] Bao Y Y, Li S R, Liu Y H and Xu T F 2022 Chaos, Solitons and Fractals 156 111853
[6] Fleischer J W, Segev M, Efremidis N K and Christodoulides D N 2003 Nature 422 147
[7] Christodoulides D N, Lederer F and Silberberg Y 2003 Nature 424 817
[8] Kartashov Y V, Malomed B A, Vysloukh V A and Torner L 2009 Phys. Rev. A 80 053816
[9] He Y J, Mihalache D and Hu B 2010 Opt. Lett. 35 1716
[10] Dong L, Wang J X, Li Q Y, Shen H Z, Dong H K, Xiu X M, Gao Y J and Oh C H 2016 Phys. Rev. A 93 012308
[11] Xu W Q, Wang H, Xie D H, Che J L and Zhang Y P 2022 Chin. Phys. B 31 124209
[12] Lin Q and He B 2009 Phys. Rev. A 80 042310
[13] Dong L, Wang J X, Li Q Y, Shen H Z, Dong H K, Xiu X M and Gao Y J 2016 Opt. Lett. 41 1030
[14] Lin Q and Li J 2009 Phys. Rev. A 79 022301
[15] Chen L, Xiu X M, Dong L, Liu N N, Shen C P, Zhang S, Chen S and Su S L 2022 Opt. Lett. 47 2262
[16] Xiu X M, Geng X, Wang S L, Cui C, Li Q Y, Ji Y Q and Dong L 2019 Adv. Quantum Technol. 2 1900066
[17] Makris K G, Suntsov S, Christodoulides D N, Stegeman G I and Hache A 2005 Opt. Lett. 30 2466
[18] Xiao J, Tian Z X, Huang C M and Dong L W 2018 Opt. Express 26 2650
[19] Huang C M and Dong L W 2019 Opt. Lett. 44 5438
[20] Szameit A, Kartashov Y V, Dreisow F, Pertsch T, Nolte S, Tünnermann A and Torner L 2007 Phys. Rev. Lett. 98 173903
[21] Wang X S, Bezryadina A, Chen Z G, Makris K G, Christodoulides D N and Stegeman G I 2007 Phys. Rev. Lett. 98 123903
[22] Kartashov Y V, Vysloukh V A and Torner L 2006 Phys. Rev. Lett. 96 073901
[23] Xu T F, Guo X M, Jing X L, Wu W C and Liu C M 2011 Phys. Rev. A 83 043610
[24] Zhang Y P, Xu Y and Busch T 2015 Phys. Rev. A 91 043629
[25] Zhu X, Xiang D and Zeng L W 2023 Chaos, Solitons and Fractals 169 113317
[26] Xu T F 2018 Chin. Phys. B 27 016702
[27] Li C Y and Kartashov Y V 2023 Phys. Rev. B 108 184301
[28] Katti A and Umesh D 2024 Chaos, Solitons and Fractals 183 114826
[29] Molina M I, Kartashov Y V, Torner L and Kivshar Y S 2007 Opt. Lett. 32 2668
[30] Qi P F, Feng T R, Wang S N, Han R, Hu Z J, Zhang T H, Tian J G and Xu J J 2016 Phys. Rev. A 93 053822
[31] Yang R X and Wu X L 2008 Opt. Express 16 17759
[32] Ye F W, Kartashov Y V, Vysloukh V A and Torner L 2008 Opt. Lett. 33 1288
[33] Huang C M, Li C Y and Dong L W 2020 Opt. Express 28 21134
[34] López-Aguayo S, Kartashov Y V, Vysloukh V A and Torner L 2010 Phys. Rev. Lett. 105 013902
[35] Kartashov Y V, Torner L and Vysloukh V A 2005 Opt. Express 13 4244
[36] Pertsch T, Peschel U and Lederer F 2003 Chaos, Solitons and Fractals 13 744
[37] Molina M I, Kartashov Y V, Torner L and Kivshar Y S 2008 Phys. Rev. A 77 053813
[38] Kartashov Y V, Vysloukh V A and Torner L 2005 J. Opt. Soc. Am. B 22 1356
[39] Buryak A V, Di Trapani P, Skryabin D V and Trillo S 2002 Phys. Rep. 370 63
[40] Zhou Q, Zhong Y, Triki H, Sun Y Z, Xu S L, Liu W J and Biswas A 2022 Chin. Phys. Lett. 39 044202
[41] Xu Z Y, Kartashov Y V, Crasovan L C, Mihalache D and Torner L 2005 Phys. Rev. E 71 016616
[42] Buryak A V and Kivshar Y S 1994 Opt. Lett. 19 1612
[43] Li C Y, Cui R, Ye F W, Kartashov Y V, Torner L and Chen X F 2015 Opt. Lett. 40 898
[44] Xie J N, He Y J and Wang H Z 2010 J. Opt. Soc. Am. B 27 484
[45] Suntsov S, Makris K G, Christodoulides D N, Stegeman G I, Haché A, Morandotti R, Yang H, Salamo G and Sorel M 2006 Phys. Rev. Lett. 96 063901
[46] Snyder A W and Chen Y J 1989 Opt. Lett. 14 517
[47] Yang J K and Lakoba T I 2007 Stud. Appl. Math. 118 153
[48] Cao Y and Xu T F 2023 Phys. Rev. A 108 013509
[49] Yin G Y, Zheng J B and Dong L W 2010 Opt. Commun. 283 583
[50] Lin Q, He B, Bergou J A and Ren Y H 2009 Phys. Rev. A 80 042311
[51] Dong L, Wang S L, Cui C, Geng X, Li Q Y, Dong H K, Xiu X M and Gao Y J 2018 Opt. Lett. 43 4635
[52] Szameit A, Burghoff J, Pertsch T, Nolte S, Tünnermann A and Lederer F 2006 Opt. Express 14 6055
[53] Blöemer D, Szameit A, Dreisow F, Schreiber T, Nolte S and Tünnermann A 2006 Opt. Express 14 2151
[54] Szameit A, Kartashov Y V, Dreisow F, Heinrich M, Pertsch T, Nolte S, Tünnermann A, Vysloukh V A and Torner L 2008 Opt. Lett. 33 1132
[1] Quasi-anti-parity—time-symmetric single-resonator micro-optical gyroscope with Kerr nonlinearity
Jingtong Geng(耿靖童), Shuyi Xu(徐书逸), Ting Jin(靳婷), Shulin Ding(丁舒林), Liu Yang(杨柳), Ying Wang(王颖), and Yonggang Zhang(张勇刚). Chin. Phys. B, 2024, 33(1): 014208.
[2] Nonlinear perturbation of a high-order exceptional point: Skin discrete breathers and the hierarchical power-law scaling
Hui Jiang(江慧), Enhong Cheng(成恩宏), Ziyu Zhou(周子榆), and Li-Jun Lang(郎利君). Chin. Phys. B, 2023, 32(8): 084203.
[3] Absorption spectra and enhanced Kerr nonlinearity in a four-level system
Hao-Jie Huangfu(皇甫浩杰), Ying-Jie Du(杜英杰), and Ai-Hua Gao(高爱华). Chin. Phys. B, 2023, 32(11): 114214.
[4] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[5] Anti-$\mathcal{PT}$-symmetric Kerr gyroscope
Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉). Chin. Phys. B, 2022, 31(1): 014215.
[6] Generating Kerr nonlinearity with an engineered non-Markovian environment
Fei-Lei Xiong(熊飞雷), Wan-Li Yang(杨万里), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(4): 040302.
[7] Surface plasmon polariton at the interface of dielectric and graphene medium using Kerr effect
Bakhtawar, Muhammad Haneef, B A Bacha, H Khan, M Atif. Chin. Phys. B, 2018, 27(11): 114215.
[8] Enhanced Kerr nonlinearity in a quantized four-level graphene nanostructure
Ghahraman Solookinejad, M Panahi, E Ahmadi, Seyyed Hossein Asadpour. Chin. Phys. B, 2016, 25(7): 074204.
[9] Bidirectional transfer of quantum information for unknown photons via cross-Kerr nonlinearity and photon-number-resolving measurement
Jino Heo, Chang-Ho Hong, Dong-Hoon Lee, Hyung-Jin Yang. Chin. Phys. B, 2016, 25(2): 020306.
[10] Efficient entanglement concentration for arbitrary less-entangled NOON state assisted by single photons
Lan Zhou(周澜) and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2016, 25(2): 020308.
[11] Bidirectional quantum teleportation of unknown photons using path-polarization intra-particle hybrid entanglement and controlled-unitary gates via cross-Kerr nonlinearity
Jino Heo, Chang-Ho Hong, Jong-In Lim, Hyung-Jin Yang. Chin. Phys. B, 2015, 24(5): 050304.
[12] Generation of hyperentangled four-photon cluster state via cross-Kerr nonlinearity
Yan Xiang (闫香), Yu Ya-Fei (於亚飞), Zhang Zhi-Ming (张智明). Chin. Phys. B, 2014, 23(6): 060306.
[13] Rectification effect in asymmetric Kerr nonlinear medium
Liu Wan-Guo (刘晚果), Pan Feng-Ming (潘风明), Cai Li-Wei (蔡力伟). Chin. Phys. B, 2014, 23(6): 064213.
[14] Complete four-photon cluster-state analyzer based on cross-Kerr nonlinearity
Wang Zhi-Hui (王志会), Zhu Long (朱龙), Su Shi-Lei (苏石磊), Guo Qi (郭奇), Cheng Liu-Yong (程留永), Zhu Ai-Dong (朱爱东), Zhang Shou (张寿). Chin. Phys. B, 2013, 22(9): 090309.
[15] Efficient three-step entanglement concentration for an arbitrary four-photon cluster state
Si Bin (司斌), Su Shi-Lei (苏石磊), Sun Li-Li (孙立莉), Cheng Liu-Yong (程留永), Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2013, 22(3): 030305.
No Suggested Reading articles found!