|
|
|
Surface solitons in Kerr-type nonlinear media with chirped lattices |
| Xiaoyang Wang(王笑阳), Huilian Wei(魏慧莲), Xuefei Zhang(张雪菲), and Tianfu Xu(徐天赋)† |
| Hebei Key Laboratory of Microstructural Material Physics, School of Science, Yanshan University, Qinhuangdao 066004, China |
|
|
|
|
Abstract The existence and stability of the fundamental, multi-peak, and twisted solitons in Kerr nonlinear media with chirped (amplitude-modulated) lattices are reported. We discover that the chirp rate and lattice depth can dramatically change the existence domain of solitons, the energy flow of solitons increases with increasing chirp rate or decreasing lattice depth. We also analyze how the chirp rate and lattice depth affect the stability of solitons. The stable domains of fundamental solitons and twisted solitons exhibit a multi-window distribution, while multi-peak solitons are unstable throughout the entire existence domain.
|
Received: 20 December 2024
Revised: 11 February 2025
Accepted manuscript online: 14 March 2025
|
|
PACS:
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
| |
42.50.Md
|
(Optical transient phenomena: quantum beats, photon echo, free-induction decay, dephasings and revivals, optical nutation, and self-induced transparency)
|
| |
43.25.Rq
|
(Solitons, chaos)
|
|
| Fund: Project supported by the Science and Technology Project of Hebei Education Department, China (Grant No. ZD2020200) and the Innovation Capability Improvement Project of Hebei Province, China (Grant No. 22567605H). |
Corresponding Authors:
Tianfu Xu
E-mail: tfxu@ysu.edu.cn
|
Cite this article:
Xiaoyang Wang(王笑阳), Huilian Wei(魏慧莲), Xuefei Zhang(张雪菲), and Tianfu Xu(徐天赋) Surface solitons in Kerr-type nonlinear media with chirped lattices 2025 Chin. Phys. B 34 060302
|
[1] Kartashov Y V, Astrakharchik G E, Malomed B A and Torner L 2019 Nat. Rev. Phys. 1 185 [2] Mihalache D 2021 Rom. Rep. Phys. 73 403 [3] Malomed B A, Mihalache D, Wise F and Torner L 2005 J. Opt. B: Quantum Semiclassical Opt. 7 R53 [4] Kivshar Y S and Malomed B A 1989 Rev. Mod. Phys. 61 763 [5] Bao Y Y, Li S R, Liu Y H and Xu T F 2022 Chaos, Solitons and Fractals 156 111853 [6] Fleischer J W, Segev M, Efremidis N K and Christodoulides D N 2003 Nature 422 147 [7] Christodoulides D N, Lederer F and Silberberg Y 2003 Nature 424 817 [8] Kartashov Y V, Malomed B A, Vysloukh V A and Torner L 2009 Phys. Rev. A 80 053816 [9] He Y J, Mihalache D and Hu B 2010 Opt. Lett. 35 1716 [10] Dong L, Wang J X, Li Q Y, Shen H Z, Dong H K, Xiu X M, Gao Y J and Oh C H 2016 Phys. Rev. A 93 012308 [11] Xu W Q, Wang H, Xie D H, Che J L and Zhang Y P 2022 Chin. Phys. B 31 124209 [12] Lin Q and He B 2009 Phys. Rev. A 80 042310 [13] Dong L, Wang J X, Li Q Y, Shen H Z, Dong H K, Xiu X M and Gao Y J 2016 Opt. Lett. 41 1030 [14] Lin Q and Li J 2009 Phys. Rev. A 79 022301 [15] Chen L, Xiu X M, Dong L, Liu N N, Shen C P, Zhang S, Chen S and Su S L 2022 Opt. Lett. 47 2262 [16] Xiu X M, Geng X, Wang S L, Cui C, Li Q Y, Ji Y Q and Dong L 2019 Adv. Quantum Technol. 2 1900066 [17] Makris K G, Suntsov S, Christodoulides D N, Stegeman G I and Hache A 2005 Opt. Lett. 30 2466 [18] Xiao J, Tian Z X, Huang C M and Dong L W 2018 Opt. Express 26 2650 [19] Huang C M and Dong L W 2019 Opt. Lett. 44 5438 [20] Szameit A, Kartashov Y V, Dreisow F, Pertsch T, Nolte S, Tünnermann A and Torner L 2007 Phys. Rev. Lett. 98 173903 [21] Wang X S, Bezryadina A, Chen Z G, Makris K G, Christodoulides D N and Stegeman G I 2007 Phys. Rev. Lett. 98 123903 [22] Kartashov Y V, Vysloukh V A and Torner L 2006 Phys. Rev. Lett. 96 073901 [23] Xu T F, Guo X M, Jing X L, Wu W C and Liu C M 2011 Phys. Rev. A 83 043610 [24] Zhang Y P, Xu Y and Busch T 2015 Phys. Rev. A 91 043629 [25] Zhu X, Xiang D and Zeng L W 2023 Chaos, Solitons and Fractals 169 113317 [26] Xu T F 2018 Chin. Phys. B 27 016702 [27] Li C Y and Kartashov Y V 2023 Phys. Rev. B 108 184301 [28] Katti A and Umesh D 2024 Chaos, Solitons and Fractals 183 114826 [29] Molina M I, Kartashov Y V, Torner L and Kivshar Y S 2007 Opt. Lett. 32 2668 [30] Qi P F, Feng T R, Wang S N, Han R, Hu Z J, Zhang T H, Tian J G and Xu J J 2016 Phys. Rev. A 93 053822 [31] Yang R X and Wu X L 2008 Opt. Express 16 17759 [32] Ye F W, Kartashov Y V, Vysloukh V A and Torner L 2008 Opt. Lett. 33 1288 [33] Huang C M, Li C Y and Dong L W 2020 Opt. Express 28 21134 [34] López-Aguayo S, Kartashov Y V, Vysloukh V A and Torner L 2010 Phys. Rev. Lett. 105 013902 [35] Kartashov Y V, Torner L and Vysloukh V A 2005 Opt. Express 13 4244 [36] Pertsch T, Peschel U and Lederer F 2003 Chaos, Solitons and Fractals 13 744 [37] Molina M I, Kartashov Y V, Torner L and Kivshar Y S 2008 Phys. Rev. A 77 053813 [38] Kartashov Y V, Vysloukh V A and Torner L 2005 J. Opt. Soc. Am. B 22 1356 [39] Buryak A V, Di Trapani P, Skryabin D V and Trillo S 2002 Phys. Rep. 370 63 [40] Zhou Q, Zhong Y, Triki H, Sun Y Z, Xu S L, Liu W J and Biswas A 2022 Chin. Phys. Lett. 39 044202 [41] Xu Z Y, Kartashov Y V, Crasovan L C, Mihalache D and Torner L 2005 Phys. Rev. E 71 016616 [42] Buryak A V and Kivshar Y S 1994 Opt. Lett. 19 1612 [43] Li C Y, Cui R, Ye F W, Kartashov Y V, Torner L and Chen X F 2015 Opt. Lett. 40 898 [44] Xie J N, He Y J and Wang H Z 2010 J. Opt. Soc. Am. B 27 484 [45] Suntsov S, Makris K G, Christodoulides D N, Stegeman G I, Haché A, Morandotti R, Yang H, Salamo G and Sorel M 2006 Phys. Rev. Lett. 96 063901 [46] Snyder A W and Chen Y J 1989 Opt. Lett. 14 517 [47] Yang J K and Lakoba T I 2007 Stud. Appl. Math. 118 153 [48] Cao Y and Xu T F 2023 Phys. Rev. A 108 013509 [49] Yin G Y, Zheng J B and Dong L W 2010 Opt. Commun. 283 583 [50] Lin Q, He B, Bergou J A and Ren Y H 2009 Phys. Rev. A 80 042311 [51] Dong L, Wang S L, Cui C, Geng X, Li Q Y, Dong H K, Xiu X M and Gao Y J 2018 Opt. Lett. 43 4635 [52] Szameit A, Burghoff J, Pertsch T, Nolte S, Tünnermann A and Lederer F 2006 Opt. Express 14 6055 [53] Blöemer D, Szameit A, Dreisow F, Schreiber T, Nolte S and Tünnermann A 2006 Opt. Express 14 2151 [54] Szameit A, Kartashov Y V, Dreisow F, Heinrich M, Pertsch T, Nolte S, Tünnermann A, Vysloukh V A and Torner L 2008 Opt. Lett. 33 1132 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|