Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 084206    DOI: 10.1088/1674-1056/addaa3
Special Issue: SPECIAL TOPIC — Artificial intelligence and smart materials innovation: From fundamentals to applications
SPECIAL TOPIC — Artificial intelligence and smart materials innovation: From fundamentals to applications Prev   Next  

Strain modulation of second harmonic generation in new tetrahedral transition metal dichalcogenide monolayers

Hu Chen(陈虎)1,3, Shi-Qi Li(李仕琪)1,3,†, Yuqing Wu(吴雨晴)1,3, Xiaozhendong Bao(鲍晓振东)1,3, Zhijie Lei(雷志杰)1,3, Hongsheng Liu(柳洪盛)2, Yuee Xie(谢月娥)1,3,‡, Junfeng Gao(高峻峰)2,§, Yuanping Chen(陈元平)1,3, and Xiaohong Yan(颜晓红)1,3
1 School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China;
2 Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024, China;
3 Quantum Sensing and Agricultural Intelligence Detection Engineering Center of Jiangsu Province, Zhenjiang 212013, China
Abstract  Designing novel two-dimensional structures and precisely modulating their second harmonic generation (SHG) attributes are key to advancing nonlinear photonic technologies. In this work, through first-principles calculations, we propose a novel tetrahedral phase of transition metal dichalcogenides (TMDs) and validate its structural feasibility in a family of compounds, i.e., $ZX_2$ ($Z = {\rm Ti}$, Zr, Hf; $X ={\rm S}$, Se, Te). Cohesive energy and phonon dispersion calculations further demonstrate that eight of nine possible $ZX_2$ monolayers are dynamically stable. All the $ZX_2$ monolayers exhibit pronounced out-of-plane SHG with nonlinear susceptibility components reaching the order of 10$^2$ pm/V. Strain engineering imposes a profound influence on the SHG response of $ZX_2$ monolayers by reducing symmetry and modifying nonlinear susceptibility components. The redshift and significant enhancement of the prominent peak in SHG spectra are also revealed due to strain-induced charge redistribution and band gap reduction. Intriguingly, strain-driven nonlinear optical switching effects are realized in the $ZX_2$ monolayers, with a reversible switching of SHG component ordering under tensile and compressive strain. In such a case, the anisotropic SHG pattern transforms from fourfold to twofold symmetry under the strain. Our work demonstrates the efficacy of strain engineering in precisely enhancing SHG, paving the way for the integration of novel TMD structures into tunable and flexible nonlinear optical devices.
Keywords:  second harmonic generation      strain modulation      transition metal dichalcogenides      phase  
Received:  26 March 2025      Revised:  16 May 2025      Accepted manuscript online:  20 May 2025
PACS:  42.65.-k (Nonlinear optics)  
  42.65.An (Optical susceptibility, hyperpolarizability)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
Fund: This work is supported by the National Natural Science Foundation of China (Grant Nos. 12304220, 12174157, 12074150, and 12374174), the Natural Science Foundation of Jiangsu Province (Grant No. BK20230518), the China Postdoctoral Science Foundation (Grant No. 2023M731383), the College Student Innovation Project (Grant No. 202410299946X), and the Scientific Research Project of Jiangsu University (Grant No. 22A397).
Corresponding Authors:  Shi-Qi Li, Yuee Xie, Junfeng Gao     E-mail:  shiqili@ujs.edu.cn;yueex@ujs.edu.cn;gaojf@dlut.edu.cn

Cite this article: 

Hu Chen(陈虎), Shi-Qi Li(李仕琪), Yuqing Wu(吴雨晴), Xiaozhendong Bao(鲍晓振东), Zhijie Lei(雷志杰), Hongsheng Liu(柳洪盛), Yuee Xie(谢月娥), Junfeng Gao(高峻峰), Yuanping Chen(陈元平), and Xiaohong Yan(颜晓红) Strain modulation of second harmonic generation in new tetrahedral transition metal dichalcogenide monolayers 2025 Chin. Phys. B 34 084206

[1] Boyd RW, Gaeta A L and Giese E 2008 Springer Handbook of Atomic, Molecular, and Optical Physics (New York, Springer) pp. 1097–1110
[2] Shen Y R 1984 Principles of Nonlinear Optics (New York, Wiley- Interscience)
[3] Autere A, Jussila H, Dai Y, Wang Y, Lipsanen H and Sun Z 2018 Adv. Mater. 30 1705963
[4] Huang W, Xiao Y, Xia F, Chen X and Zhai T 2024 Adv. Funct. Mater. 34 2310726
[5] Khan A R, Zhang L, Ishfaq K, Ikram A, Yildrim T, Liu B, Rahman S and Lu Y 2021 Adv. Funct. Mater. 32 2105259
[6] Keller U 2003 Nature 424 831
[7] Chang D E, Vuletić V and Lukin M D 2014 Nat. Photonics 8 685
[8] Elshaari A W, Büyüközer E, Zadeh I E, Lettner T, Zhao P, Schöll E, Gyger S, Reimer M E, Dalacu D and Poole P J 2018 Nano Lett. 18 7969
[9] Nabet B 2023 Photodetectors: Materials, Devices and Applications (Cambridge, Woodhead Publishing)
[10] Samanta G, Fayaz G, Sun Z and Ebrahim-Zadeh M 2007 Opt. Lett. 32 400
[11] Bo Y, Geng A, Bi Y, Sun Z, Yang X, Peng Q, Li H, Li R, Cui D and Xu Z 2006 Appl. Opt. 45 2499
[12] Asadipour B, Beaurepaire E, Zhang X, Chessel A, Mahou P, Supatto W, Schanne-Klein M C and Stringari C 2024 Biophys. J. 123 463
[13] Watanabe T M, Maeda Y, Shioi G, Miyazaki K and Fujita H 2025 J. Food Eng. 391 112422
[14] Brüggemann D A, Brewer J, Risbo J and Bagatolli L 2010 Food Biophys. 5 1
[15] Sun Y, Zhai X, Xu Y, Liu C, Zou X, Li Z, Shi J and Huang X 2021 Food Control 122 107772
[16] Zhai W, You T, Ouyang X and Wang M 2021 Compr. Rev. Food Sci. Food Saf. 20 1887
[17] Chen Z, Sun Y, Shi J, Zhang W, Zhang X, Huang X, Zou X, Li Z and Wei R 2022 Food Chem. 370 131276
[18] Zhu J, Agyekum A A, Kutsanedzie F Y, Li H, Chen Q, Ouyang Q and Jiang H 2018 Lwt 97 760
[19] Zhu J, Jiang X, Rong Y, Wei W, Wu S, Jiao T and Chen Q 2023 Food Chem. 414 135705
[20] Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photonics 4 611
[21] Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F and Zhang X 2011 Nature 474 64
[22] Ciattoni A, Marini A, Rizza C and Conti C 2018 Light Sci. Appl. 7 5
[23] Zhao M, Ye Z, Suzuki R, Ye Y, Zhu H, Xiao J, Wang Y, Iwasa Y and Zhang X 2016 Light Sci. Appl. 5 e16131
[24] Wang H and Qian X 2017 Nano Lett. 17 5027
[25] LI S Q, He C, Liu H, Zhao L, Xu X, Chen M,Wang L, Zhao J and Gao J 2022 Adv. Opt. Mater. 10 2200076
[26] Zhao B J, Zhao J L and Gan X T 2024 Chin. Phys. Lett. 41 104201
[27] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
[28] Choi W, Choudhary N, Han G H, Park J, Akinwande D and Lee Y H 2017 Materials Today 20 116
[29] Strasser A, Wang H and Qian X 2022 Nano Lett. 22 4145
[30] Seyler K L, Schaibley J R, Gong P, Rivera P, Jones A M, Wu S, Yan J, Mandrus D G, Yao W and Xu X 2015 Nat. Nanotechnol. 10 407
[31] Voiry D, Mohite A and Chhowalla M 2015 Chem. Soc. Rev. 44 2702
[32] Fu Q, Han J, Wang X, Xu P, Yao T, Zhong J, Zhong W, Liu S, Gao T and Zhang Z 2021 Adv. Mater. 33 1907818
[33] Friedman A L, Hanbicki A T, Perkins F K, Jernigan G G, Culbertson J C and Campbell P M 2017 Sci. Rep. 7 3836
[34] Tan S J, Abdelwahab I, Ding Z, Zhao X, Yang T, Loke G Z, Lin H, Verzhbitskiy I, Poh S M and Xu H 2017 J. Am. Chem. Soc. 139 2504
[35] Ma X, Guo P, Yi C, Yu Q, Zhang A, Ji J, Tian Y, Jin F,Wang Y and Liu K 2016 Phys. Rev. B 94 214105
[36] He C, Zhao Q, Huang Y, Zhu L, Zhang S, Bai J and Xu X 2019 J. Phys. Chem. Lett. 10 2090
[37] Kumar N, Najmaei S, Cui Q, Ceballos F, Ajayan P M, Lou J and Zhao H 2013 Phys. Rev. B 87 161403
[38] Tedstone A A, Lewis D J and O’Brien P 2016 Chem. Mater. 28 1965
[39] Zhou X and Rodriguez E E 2017 Chem. Mater. 29 5737
[40] Zhang C P and Miao X Y 2023 Chin. Phys. Lett. 40 124201
[41] Qiao Y, Chen J, Zhou S, Chen J, Jiang S and Yang Y 2024 Chin. Phys. Lett. 41 014205
[42] Zhang A, Qiu S, Zhao L, Liu H, Zhao J and Gao J 2024 Laser Photonics Rev. 18 2300742
[43] An Y Q, Nelson F, Lee J U and Diebold A C 2013 Nano Lett. 13 2104
[44] He C, Wu R, Zhu L, Huang Y, Du W, Qi M, Zhou Y, Zhao Q and Xu X 2022 J. Phys. Chem. Lett. 13 352
[45] He C, Zhao Q, Huang Y, Du W, Zhu L, Zhou Y, Zhang S and Xu X 2020 Phys. Chem. Chem. Phys. 22 21428
[46] Mennel L, Furchi M M, Wachter S, Paur M, Polyushkin D K and Mueller T 2018 Nat. Commun. 9 516
[47] Liang J, Zhang J, Li Z, Hong H,Wang J, Zhang Z, Zhou X, Qiao R, Xu J and Gao P 2017 Nano Lett. 17 7539
[48] Kresse G and Furthmller J 1996 Comput. Mater. Sci. 6 15
[49] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[50] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[51] Troullier N and Martins J L 1991 Phys. Rev. B 43 1993
[52] Blöchl P E 1994 Phys. Rev. B 50 17953
[53] Gonze X, Charlier J C, Allan D and Teter M 1994 Phys. Rev. B 50 13035
[54] Giannozzi P, De Gironcoli S, Pavone P and Baroni S 1991 Phys. Rev. B 43 7231
[55] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[56] Aversa C and Sipe J E 1995 Phys. Rev. B 52 14636
[57] Rashkeev S N, LambrechtWR and Segall B 1998 Phys. Rev. B 57 3905
[58] Sipe J and Ghahramani E 1993 Phys. Rev. B 48 11705
[59] Sharma S, Dewhurst J K and Ambrosch-Draxl C 2003 Phys. Rev. B 67 165332
[60] Levine Z H and Allan D C 1991 Phys. Rev. Lett. 66 41
[61] Sipe J and Shkrebtii A 2000 Phys. Rev. B 61 5337
[62] Grundmann M 2006 The physics of semiconductors Vol. 13 (New York: Springer)
[63] Horzum S, Sahin H, Cahangirov S, Cudazzo P, Rubio A, Serin T and Peeters F 2013 Phys. Rev. B 87 125415
[64] Rahman S, Yildirim T, Tebyetekerwa M, Khan A R and Lu Y 2022 ACS Nano 16 13959
[65] Eckardt R C, Masuda H, Fan Y X and Byer R L 1990 IEEE J. Quantum Electron. 26 922
[66] Guo Z, Wang M, Barimah A O, Chen Q, Li H, Shi J, El-Seedi H R and Zou X 2021 Int. J. Food Microbiol. 338 108990
[67] Han F, Huang X and Mahunu G K 2017 Trends Food Sci. Technol. 59 37
[68] Xu Y, Hassan M M, Sharma A S, Li H and Chen Q 2023 Crit. Rev. Food Sci. Nutr. 63 486
[69] He C, Zhu L, Huang Y, Du W, Qi M, Zhou Y, Zhao Q and Xu X 2022 J. Phys. Chem. C 126 10584
[1] Phase change thermal interface materials: From principles to applications and beyond
Chenggong Zhao(赵成功), Yifan Li(李一凡), Chen Jiang(蒋晨), Yuanzheng Tang(唐元政), Yan He(何燕), Wei Yu(于伟), and Bingyang Cao(曹炳阳). Chin. Phys. B, 2025, 34(9): 096301.
[2] Unique high-energy excitons in two-dimensional transition metal dichalcogenides
Yongsheng Gao(高永盛), Yuanzheng Li(李远征), Weizhen Liu(刘为振), Chuxin Yan(闫楚欣), Qingbin Wang(王庆彬), Wei Xin(辛巍), Haiyang Xu(徐海阳), and Yichun Liu(刘益春). Chin. Phys. B, 2025, 34(9): 097102.
[3] Corrigendum to “Multi-functional photonic spin Hall effect sensor controlled by phase transition”
Jie Cheng(程杰), Rui-Zhao Li(李瑞昭), Cheng Cheng(程骋), Ya-Lin Zhang(张亚林), Sheng-Li Liu(刘胜利), and Peng Dong(董鹏). Chin. Phys. B, 2025, 34(9): 099901.
[4] Enhancing phase separation of double-chiral particles by regulating inter-chiral frustration
Yi-Chen Lu(陆羿辰), Wan-Rou Cai(蔡婉柔), Meng-Chu Wang(王梦楚), Ya-Li Liu(刘雅莉), Tong Zhu(朱童), Yi-Lin Zhou(周怡琳), Tian-Chen Yu(余天晨), Yun-Xuan Ji(纪蕴轩), Ming-Qian Ao(敖明茜), Chen-Lu Li(李晨璐), Cheng-Xu Yan(颜乘旭), and Zhi-Gang Zheng(郑志刚). Chin. Phys. B, 2025, 34(8): 080506.
[5] Molecular simulation study on phase separation of immunoglobulin G
Lv-Meng Hu(胡吕梦), Yuan-Qiang Chen(陈远强), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2025, 34(8): 088701.
[6] Pressure-induced band gap closing of lead-free halide double perovskite (CH3NH3)2PtI6
Siyu Hou(侯思羽), Jiaxiang Wang(王家祥), Yijia Huang(黄乙甲), Ruijing Fu(付瑞净), and Lingrui Wang(王玲瑞). Chin. Phys. B, 2025, 34(8): 086106.
[7] Graph neural networks unveil universal dynamics in directed percolation
Ji-Hui Han(韩继辉), Cheng-Yi Zhang(张程义), Gao-Gao Dong(董高高), Yue-Feng Shi(石月凤), Long-Feng Zhao(赵龙峰), and Yi-Jiang Zou(邹以江). Chin. Phys. B, 2025, 34(8): 080702.
[8] Dynamic and polarization-independent high-Q guided resonances in metasurfaces with phase change material
Guozhong Zhang(张国忠), Mimi Zhou(周秘密), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2025, 34(8): 084201.
[9] Simultaneous second and third harmonics generation in periodically poled lithium niobate: Coupling and competition
Junming Liu(刘峻铭), Liqiang Liu(刘励强), Lihong Hong(洪丽红), and Zhiyuan Li(李志远). Chin. Phys. B, 2025, 34(8): 084203.
[10] Quantum phase transitions with eigen microstate approach in one-dimensional transverse-field Ising model
Zhongshan Su(苏中山), Yuan Jiang(江源), Gaoke Hu(胡高科), Yue-Hua Su(苏跃华), Liangsheng Li(李粮生), Wen-Long You(尤文龙), Maoxin Liu(刘卯鑫), and Xiaosong Chen(陈晓松). Chin. Phys. B, 2025, 34(8): 086401.
[11] Effect of interlayer interaction on magnon properties of vdW honeycomb heterostructures
Jun Shan(单俊), Lichuan Zhang(张礼川), Huasu Fu(付华宿), Yuee Xie(谢月娥), Yuriy Mokrousov, and Yuanping Chen(陈元平). Chin. Phys. B, 2025, 34(8): 087501.
[12] Phase-field modeling of effect of Ni on formation and phase transformation of Cu-rich phase in Fe-Cu-Ni alloys
Ming-Guang Wei(位明光), Zhong-Wen Zhang(张中文), Min Cui(崔敏), Yuan-Bin Zhang(张元彬), and Tong-Guang Zhai(翟同广). Chin. Phys. B, 2025, 34(8): 088103.
[13] First-principles study on structural, electronic, and superconducting properties of Laves-phase alloy HfZn2 under pressure
Xiao Ma(马晓), Tao Wang(王涛), Jianfeng Wen(文剑锋), Zhenwei Zhou(周振玮), and Hongyu Zhu(朱红玉). Chin. Phys. B, 2025, 34(8): 086108.
[14] Pressure distribution imaging through wide-field optical detected magnetic resonance
Chaofan Lv(吕超凡), Kai Ma(马凯), Feihu Lei(雷飞虎), Yidan Qu(屈怡丹), Qilong Wu(吴琦隆), Wuyou Zhang(张吾优), Yingjie Zhang(张英杰), Huihui Yu(余辉辉), Xuanming Shen(申炫铭), Yuan Zhang(张元), Xigui Yang(杨西贵), and Chongxin Shan(单崇新). Chin. Phys. B, 2025, 34(8): 087601.
[15] One-step synthesis of ThMn12-type Sm0.8Zr0.2Fe11SiBx (x =0-0.2) ribbon magnets via rapid solidification
Chi Zhang(张驰), Hui-Dong Qian(千辉东), Wenyun Yang(杨文云), Jingzhi Han(韩景智), Xuegang Chen(陈学刚), and Jinbo Yang(杨金波). Chin. Phys. B, 2025, 34(7): 077501.
No Suggested Reading articles found!