Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 088701    DOI: 10.1088/1674-1056/add50b
RAPID COMMUNICATION Prev   Next  

Molecular simulation study on phase separation of immunoglobulin G

Lv-Meng Hu(胡吕梦)1, Yuan-Qiang Chen(陈远强)1, Hong-Ming Ding(丁泓铭)1,†, and Yu-Qiang Ma(马余强)2,3
1 Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China;
2 National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China;
3 Jiangsu Physical Science Research Center, Nanjing 210093, China
Abstract  Understanding the liquid-liquid phase separation (LLPS) of immunoglobulin G (IgG) is crucial, as it profoundly influences IgG's biological activity and stability. In this study, we employed coarse-grained molecular dynamics simulations to systematically investigate the phase separation behavior of IgG. We first constructed two types of IgG models: all-pair IgG model and partial-pair IgG model, and compared the coexistence curve from our simulations with experimental data. Our results showed that the partial-pair IgG model aligns better with the experimental critical temperature and critical density. Using this model, we then calculated the temperature-dependent variations of IgG's radius of gyration, surface tension, viscosity, etc. More importantly, we demonstrated that variations in the interaction strengths among IgG molecules significantly influence their phase separation behavior. Specifically, a higher standard deviation of interaction strength at different temperatures is found to lead to more stable phase-separated states. Furthermore, we observed that the introduction of repulsive polymers and strongly attractive polymers consistently enhances IgG phase separation, while weakly attractive polymers exhibit a dual regulatory effect on the phase separation. Overall, this study provides valuable insights into the mechanisms governing IgG phase behavior, with potential implications for optimizing biopharmaceutical products.
Keywords:  phase separation      immunoglobulin G      coarse-graining      molecular dynamics  
Received:  02 April 2025      Revised:  28 April 2025      Accepted manuscript online:  07 May 2025
PACS:  87.10.Tf (Molecular dynamics simulation)  
  64.75.-g (Phase equilibria)  
  87.15.-v (Biomolecules: structure and physical properties)  
  87.15.A- (Theory, modeling, and computer simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12222506, 12347102, and 12174184).
Corresponding Authors:  Hong-Ming Ding     E-mail:  dinghm@suda.edu.cn

Cite this article: 

Lv-Meng Hu(胡吕梦), Yuan-Qiang Chen(陈远强), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强) Molecular simulation study on phase separation of immunoglobulin G 2025 Chin. Phys. B 34 088701

[1] Edelman G M 1973 Science 180 830
[2] Rosenberg A S 2006 AAPS J. 8 59
[3] Vidarsson G, Dekkers G and Rispens T 2014 Front. Immunol. 5 520
[4] Hatch H W, Bergonzo C, Blanco M A, Yuan G, Grudinin S, Lund M, Curtis J E, Grishaev A V, Liu Y and Shen V K 2024 J. Chem. Phys. 161 094113
[5] Dumetz A C, Chockla A M, Kaler EWand Lenhoff A M 2008 Biophys. J. 94 570
[6] Mason B D, Zhang-Van Enk J, Zhang L, Remmele R L Jr and Zhang J 2010 Biophys. J. 99 3792
[7] Yan Z S, Ma Y Q and Ding H M 2024 J. Chem. Phys. 160 064907
[8] Ren C L, Shan Y, Zhang P, Ding H M and Ma Y Q 2022 Sci. Adv. 8 eabo7885
[9] Pantuso E, Mastropietro T F, Briuglia M L, Gerard C J J, Curcio E, Ter Horst J H, Nicoletta F P and Di Profio G 2020 Sci. Rep. 10 8902
[10] Larson N R,Wei Y, Cruz T A, Esfandiary R, Kalonia C K, Forrest M L and Middaugh C R 2023 J. Pharm. Sci. 112 680
[11] Likhtman A E 2005 Macromolecules 38 6128
[12] Nikoubashman A and Howard M P 2017 Macromolecules 50 8279
[13] Demeule B, Lawrence M J, Drake A F, Gurny R and Arvinte T 2007 Biochim. Biophys. Acta 1774 146
[14] Dorsaz N, Thurston G M, Stradner A, Schurtenberger P and Foffi G 2011 Soft Matter 7 1763
[15] Sibanda N, Shanmugam R K and Curtis R 2023 Mol. Pharm. 20 2662
[16] Herling T W, Invernizzi G, Ausserwöger H, Bjelke J R, Egebjerg T, Lund S, Lorenzen N and Knowles T P J 2023 Proc. Natl. Acad. Sci. USA 120 e2306700120
[17] Ausserwöger H, Krainer G, Welsh T J, Thorsteinson N, De Csilléry E, Sneideris T, Schneider M M, Egebjerg T, Invernizzi G, Herling T W, Lorenzen N and Knowles T P J 2023 Proc. Natl. Acad. Sci. USA 120 e2210332120
[18] Chen S, Lau H, Brodsky Y, Kleemann G R and Latypov R F 2010 Protein Sci. 19 1191
[19] Nishi H, Miyajima M, Nakagami H, Noda M, Uchiyama S and Fukui K 2010 Pharm. Res. 27 1348
[20] Ahamed T, Esteban B N A, Ottens M, Van Dedem G W K, Van Der Wielen L A M, Bisschops M A T, Lee A, Pham C and Thömmes J 2007 Biophys. J. 93 610
[21] Mason B D, Zhang L, Remmele R L Jr and Zhang J 2011 J. Pharm. Sci. 100 4587
[22] Nishi H, Miyajima M,Wakiyama N, Kubota K, Hasegawa J, Uchiyama S and Fukui K 2011 J. Biosci. Bioeng. 112 326
[23] Trilisky E, Gillespie R, Osslund T D and Vunnum S 2011 Biotechnol. Prog. 27 1054
[24] Wang Y, Lomakin A, Latypov R F, Laubach J P, Hideshima T, Richardson P G, Munshi N C, Anderson K C and Benedek G B 2013 J. Chem. Phys. 139 121904
[25] Zheng Y, Li Q, Freiberger M I, Song H, Hu G, Zhang M, Gu R and Li J 2024 J. Chem. Inf. Model. 64 6768
[26] Janc T, Korb J P, Lukšič M, Vlachy V, Bryant R G, Mériguet G, Malikova N and Rollet A L 2021 J. Phys. Chem. B 125 8673
[27] Rao V S, Srinivas K, Sujini G N and Kumar G N S 2014 J. Proteomics 2014 147648
[28] Jones S and Thornton J M 1996 Proc. Natl. Acad. Sci. USA 93 13
[29] Nooren I M A and Thornton J M 2003 Embo J. 22 3486
[30] Thompson R W Jr, Latypov R F, Wang Y, Lomakin A, Meyer J A, Vunnum S and Benedek G B 2016 J. Chem. Phys. 145 185101
[31] Zhang F, Skoda M W A, Jacobs R M J, Martin R A, Martin C M and Schreiber F 2007 J. Phys. Chem. B 111 251
[32] Antosiewicz J, Mccammon J A and Gilson M K 1994 J. Mol. Biol. 238 415
[33] Voth G A 2017 Acc. Chem. Res. 50 594
[34] Heyman B 2003 Immunol. Lett. 88 157
[35] Brandt J P, Patapoff T W and Aragon S R 2010 Biophys. J. 99 905
[36] Chaudhri A, Zarraga I E, Kamerzell T J, Brandt J P, Patapoff TW, Shire S J and Voth G A 2012 J. Phys. Chem. B 116 8045
[37] Davies D R and Cohen G H 1996 Proc. Natl. Acad. Sci. USA 93 7
[38] Wilson I A and Stanfield R L 1994 Curr. Opin. Struct. Biol. 4 857
[39] Abhinandan K R and Martin A C R 2008 Mol. Immunol. 45 3832
[40] Chothia C, Lesk A M, Tramontano A, Levitt M, Smith-Gill S J, Air G, Sheriff S, Padlan E A, Davies D, Tulip W R, Colman P M, Spinelli S, Alzari P M and Poljak R J 1989 Nature 342 877
[41] Sivasubramanian A, Sircar A, Chaudhury S and Gray J J 2009 Proteins 74 497
[42] Oganesyan V, Damschroder M M, Leach W, Wu H and Dallácqua W F 2008 Mol. Immunol. 45 1872
[43] Oganesyan V, Damschroder M M, Woods R M, Cook K E, Wu H and Dallácqua W F 2009 Mol. Immunol. 46 1750
[44] Hirschmann F, Lopez H, Roosen-Runge F, Seydel T, Schreiber F and Oettel M 2018 J. Chem. Phys. 148 084112
[45] Harris J M, Martin N E and ModiM2001 Clin. Pharmacokinet. 40 539
[46] Brzezinski M, Argudo P G, Scheidt T, Yu M, Lemke E A, Michels J J and Parekh S H 2023 bioRxiv 570970
[47] Chudoba R, Heyda J and Dzubiella J 2017 J. Chem. Theory Comput. 13 6317
[48] Wang Y, Latypov R F, Lomakin A, Meyer J A, Kerwin B A, Vunnum S and Benedek G B 2014 Mol. Pharm. 11 1391
[49] Fetahaj Z, Jaworek M W, Oliva R and Winter R 2022 Chem. Eur. J. 28 e202201658
[50] Cruz R D C, Martins R J, Cardoso M J E D M and Barcia O E 2009 J. Solut. Chem. 38 957
[51] Silmore K S, Howard M P and Panagiotopoulos A Z 2017 Mol. Phys. 115 320
[52] Dignon G L, Zheng W, Kim Y C, Best R B and Mittal J 2018 PLoS Comput. Biol. 14 e1005941
[53] Thompson A P, Aktulga H M, Berger R, Bolintineanu D S, Brown W M, Crozier P S, Veld P J, Kohlmeyer A, Moore S G, Nguyen T D, Shan R, Stevens M J, Tranchida J, Trott C and Plimpton S J 2022 Comput. Phys. Commun. 271 108171
[54] Wang H, Kelley F M, Milovanovic D, Schuster B S and Shi Z 2021 Biophys. Rep. 1 100011
[55] Alshareedah I, Thurston G M and Banerjee P R 2021 Biophys. J. 120 1161
[56] Kirkwood J G and Buff F P 1949 J. Chem. Phys. 17 338
[57] Lee H, De Vries A H, Marrink S J and Pastor R W 2009 J. Phys. Chem. B 113 13186
[58] Humbert M T, Zhang Y and Maginn E J 2019 J. Chem. Inf. Model. 59 1301
[59] Tejedor A R, Collepardo-Guevara R, Ramírez J and Espinosa J R 2023 J. Phys. Chem. B 127 4441
[60] Ramírez J, Sukumaran S K, Vorselaars B and Likhtman A E 2010 J. Chem. Phys. 133 154103
[61] Boudara V a H, Read D J and Ramírez J 2020 J. Rheol. 64 709
[62] Sundaravadivelu Devarajan D, Wang J, Szała-Mendyk B, Rekhi S, Nikoubashman A, Kim Y C and Mittal J 2024 Nat. Commun. 15 1912
[63] Kastelic M and Vlachy V 2018 J. Phys. Chem. B 122 5400
[64] Sagawa T, Oda M, Morii H, Takizawa H, Kozono H and Azuma T 2005 Mol. Immunol. 42 9
[65] Raut A S and Kalonia D S 2016 Mol. Pharm. 13 774
[66] Sun G, Wang Y, Lomakin A, Benedek G B, Stanley H E, Xu L and Buldyrev S V 2016 J. Chem. Phys. 145 194901
[67] Yang L, Biswas M E and Chen P 2003 Biophys. J. 84 509
[68] Widom B 1965 J. Chem. Phys. 43 3892
[69] Williamson A R 1976 Annu. Rev. Biochem. 45 467
[70] Henderson R, Watts B E, Ergin H N, Anasti K, Parks R, Xia S M, Trama A, Liao H X, Saunders K O, Bonsignori M,Wiehe K, Haynes B F and Alam S M 2019 Nat. Commun. 10 654
[71] Annunziata O, Asherie N, Lomakin A, Pande J, Ogun O and Benedek G B 2002 Proc. Natl. Acad. Sci. USA 99 14165
[72] Wang Y and Annunziata O 2007 J. Phys. Chem. B 111 1222
[73] Arakawa T and Timasheff S N 1985 Biochemistry 24 6756
[74] Bhat R and Timasheff S N 1992 Protein Sci. 1 1133
[75] Nobeyama T, Furuki T and Shiraki K 2023 Langmuir 39 17043
[1] Structure and properties of MgO melt at high pressure: A first-principles study
Min Wu(吴旻) and Zhongsen Sun(孙忠森). Chin. Phys. B, 2025, 34(8): 086301.
[2] Solubility parameters of supercritical CO2 and CO2+H2O fluids: A molecular dynamics study
Junliang Wang(王军良), Jiaqing Fang(方佳清), Ting Wu(吴婷), Quanyuan Wang(王泉源), Zhiyan Pan(潘志彦), Mian Hu(胡沔), and Min Wu(吴旻). Chin. Phys. B, 2025, 34(8): 088201.
[3] Hyperparameter optimization and force error correction of neuroevolution potential for predicting thermal conductivity of wurtzite GaN
Zhuo Chen(陈卓), Yuejin Yuan(袁越锦), Wenyang Ding(丁文扬), Shouhang Li(李寿航), Meng An(安盟), and Gang Zhang(张刚). Chin. Phys. B, 2025, 34(8): 086110.
[4] Anisotropic displacement threshold energy and defect distribution in diamond: PKA energy and temperature effect
Ke Wu(吴可), Zeyi Du(杜泽依), Hongyang Liu(刘洪洋), Nanyun Bao(包南云), Chengke Xu(许成科), Hongrui Wang(王泓睿), Qunchao Tong(童群超), Bo Chen(陈博), Dongdong Kang(康冬冬), Guang Wang(王广), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2025, 34(8): 087104.
[5] Enhancing phase separation of double-chiral particles by regulating inter-chiral frustration
Yi-Chen Lu(陆羿辰), Wan-Rou Cai(蔡婉柔), Meng-Chu Wang(王梦楚), Ya-Li Liu(刘雅莉), Tong Zhu(朱童), Yi-Lin Zhou(周怡琳), Tian-Chen Yu(余天晨), Yun-Xuan Ji(纪蕴轩), Ming-Qian Ao(敖明茜), Chen-Lu Li(李晨璐), Cheng-Xu Yan(颜乘旭), and Zhi-Gang Zheng(郑志刚). Chin. Phys. B, 2025, 34(8): 080506.
[6] General-purpose moment tensor potential for Ga-In liquid alloys towards large-scale molecular dynamics with ab initio accuracy
Kai-Jie Zhao(赵凯杰) and Zhi-Gong Song(宋智功). Chin. Phys. B, 2025, 34(6): 066101.
[7] Depolymerization mechanism of microtubule revealed by nucleotide-dependent changes of longitudinal and lateral interactions
Bingbing Zhang(张冰冰), Ziling Huo(霍子玲), Jiaxi Li(李佳希), Jingyu Qin(覃静宇), and Yizhao Geng(耿轶钊). Chin. Phys. B, 2025, 34(6): 068702.
[8] Molecular dynamics evaluation of self-diffusion coefficients in two-dimensional dusty plasmas
Muhammad Asif Shakoori, Misbah Khan, Haipeng Li(李海鹏), Aamir Shahzad, Maogang He(何茂刚), and Syed Ali Raza. Chin. Phys. B, 2025, 34(4): 045202.
[9] Molecular dynamics simulations of collision cascades in polycrystalline tungsten
Lixia Liu(刘丽霞), Mingxuan Jiang(蒋明璇), Ning Gao(高宁), Yangchun Chen(陈阳春), Wangyu Hu(胡望宇), and Hiuqiu Deng(邓辉球). Chin. Phys. B, 2025, 34(4): 046103.
[10] Effect of copper/tungsten heterophase interface on radiation resistance: Insights from atomistic simulations
Wen Chen(陈文), Min Li(李敏), Bao-Qin Fu(付宝勤), Tun Chen(陈暾), Jie-Chao Cui(崔节超), and Qing Hou(侯氢). Chin. Phys. B, 2025, 34(4): 046108.
[11] Elastic-plastic behavior of nickel-based single crystal superalloys with γ-γ' phases based on molecular dynamics simulations
Jing-Zhao Cao(曹景昭), Yun-Guang Zhang(张云光), Zhong-Kui Zhang(张中奎), Jiang-Peng Fan(范江鹏), Qi Dong(董琪), and Ying-Ying Fang(方盈盈). Chin. Phys. B, 2025, 34(4): 046204.
[12] Atomic origin of minor alloying element effect on glass forming ability of metallic glass
Shan Zhang(张珊), Qingan Li(李庆安), Yong Yang(杨勇), and Pengfei Guan(管鹏飞). Chin. Phys. B, 2025, 34(3): 036105.
[13] Exploring superconductivity in dynamically stable carbon-boron clathrates trapping molecular hydrogen
Akinwumi Akinpelu, Mangladeep Bhullar, Timothy A. Strobel, and Yansun Yao. Chin. Phys. B, 2025, 34(3): 036103.
[14] Structural and transport properties of (Mg,Fe)SiO3 at high temperature and high pressure
Shu Huang(黄澍), Zhiyang Xiang(向志洋), Shi He(何适), Luhan Yin(尹路寒), Shihe Zhang(张时赫), Chen Chen(陈晨), Kaihua He(何开华), and Cheng Lu(卢成). Chin. Phys. B, 2025, 34(3): 036102.
[15] Novel high-temperature-resistant material SbLaO3 with superior hardness under high pressure
Haoqi Chen(陈浩琦), Haowen Jiang(姜皓文), Xuehui Jiang(姜雪辉), Jialin Wang(王佳琳), Chengyao Zhang(张铖瑶), Defang Duan(段德芳), Jing Dong(董晶), and Yanbin Ma(马艳斌). Chin. Phys. B, 2025, 34(2): 026201.
No Suggested Reading articles found!