Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 086107    DOI: 10.1088/1674-1056/adcea1
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Optimization of glass-forming ability and synergistic enhancement of strength plasticity in Cu50Zr46Al4 metallic glasses through Ag additions

Dongmei Li(李冬梅)1, Zhongyi Zhang(张忠一)1, Bolin Shang(尚博林)1, Rui Feng(丰睿)1, Xuefeng Li(李雪枫)2,†, and Peng Yu(余鹏)1,‡
1 College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China;
2 Chongqing Key Laboratory of Public Big Data Security Technology, Chongqing College of Mobile Communication, Qijiang 401420, China
Abstract  Bulk metallic glasses (BMGs) are typically characterized by high strength and elasticity. However, they generally demonstrate a deficiency in plastic deformation capability at room temperatures. In this work, Cu$_{50-x}$Zr$_{46}$Al$_{4}$Ag$_{x}$ ($x=0$, 1, 2, 3, 4) alloys were prepared by arc melting and copper mold casting to investigate their structure, glass-forming ability, and mechanical properties. The results show that the addition of Ag can increase the parameter of $\Delta T_{x}$ and $\gamma $ in Cu$_{50}$Zr$_{46}$Al$_{4}$ alloy by 116% and 1.5% respectively, effectively enhancing its thermal stability and glass-forming ability. Compressive fracture tests reveal that the addition of Ag can significantly improve the yield strength, ultimate strength, and plasticity of the Cu$_{50}$Zr$_{46}$Al$_{4}$ alloy. Specifically, with the Ag addition of 1 at.%, the alloy's ultimate strength and plasticity increased by 71.8% and 21 times, respectively. Furthermore, the introduction of Ag can effectively control the free volume content in the Cu$_{50}$Zr$_{46}$Al$_{4}$ alloy, thereby tuning the hardness of the material. This work provides valuable insights into improving the mechanical performance of BMGs through micro-alloying approaches.
Keywords:  metallic glasses      glass-forming ability      synergistic enhancement strength-plasticity      Ag addition  
Received:  24 March 2025      Revised:  15 April 2025      Accepted manuscript online:  21 April 2025
PACS:  61.25.Mv (Liquid metals and alloys)  
  61.43.Dq (Amorphous semiconductors, metals, and alloys)  
  62.20.F- (Deformation and plasticity)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12404228 and 52371148) and the Science and Technology Research Program of Chongqing Education Commission of China (Grant No. KJQN202200510).
Corresponding Authors:  Xuefeng Li, Peng Yu     E-mail:  15584202964@163.com;pengyu@cqnu.edu.cn

Cite this article: 

Dongmei Li(李冬梅), Zhongyi Zhang(张忠一), Bolin Shang(尚博林), Rui Feng(丰睿), Xuefeng Li(李雪枫), and Peng Yu(余鹏) Optimization of glass-forming ability and synergistic enhancement of strength plasticity in Cu50Zr46Al4 metallic glasses through Ag additions 2025 Chin. Phys. B 34 086107

[1] Kui H W, Greer A L and Turnbull D 1984 Appl. Phys. Lett. 45 615
[2] Wang W 2013 Prog. Phys. 33 177 (in Chinese)
[3] Liang S Y, Zhu F, Wang Y J, Pineda E, Wad T, Kato H and Qiao J C 2024 Int. J. Eng. Sci. 205 104146
[4] Q Zhang, W Zhang and Inoue 2006 Acta Mater. 55 711
[5] Yu P, Bai H Y, TangMB andWangWH 2005 J. Non-Cryst. Solids 351 1328
[6] Yu P, Bai H Y and Wang W H 2006 J. Mater. Res. 21 1674
[7] Inoue A and Zhang W 2002 Mater. Trans. 43 2921
[8] Inoue A, Zhang W, Zhang T and Kurosaka K 2001 Mater. Trans. 42 1149
[9] Zhang Q, Zhang W, Xie G and Inoue A 2007 Mater. Trans. 48 1626
[10] Vincent S, Peshwe D R, Murty B S and Bhatt J 2011 J. Non-Cryst. Solids 357 3495
[11] Inoue A, ZhangW, Zhang T and Kurosaka K 2001 Acta Mater. 49 2645
[12] Eckert J, Das J, Kim K B, Baier F, Tang M B, Wang W H and Zhang Z F 2006 Intermetallics 14 876
[13] Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H, Wu J and Xia J H 2008 J. Phys. D: Appl. Phys. 40 R273
[14] Tan H, LiY and Wang D 2005 Acta Mater. 53 2969
[15] Yu P and Bai H Y 2008 Mater. Sci. Eng. A 485 1
[16] Li D M, Chen L S, Yu P, Ding D and Xia L 2020 Chin. Phys. Lett. 37 086401
[17] Xiao J H, Ding DW, Li L, Sun Y T, Li M Z andWangWH 2024 Chin. Phys. B 33 076101
[18] Men H, Wang X K, Fu J Y and Chao L M 2006 Mater. Trans. 47 194
[19] Plummer J D and Todd I 2011 Appl. Phys. Lett. 98 021907
[20] Zhang Q, Zhang W, Xie G Q and Inoue A 2008 Mater. Sci. Eng. B 148 97
[21] Louzguine-Luzgin D V, Xie G, ZhangWand Inoue A 2007 Mater. Sci. Eng. A 465 146
[22] Zhang S, Li Q A, Yang Y and Guan P F 2025 Chin. Phys. B 34 036105
[23] Lin T J, Sheu H H, Lee C Y and Lee H B 2021 J. Alloys Compd. 867 159132
[24] Tong X, Zhang Y, Wang Y, Liang X, Zhang K, Zhang Fan, Cai Y, Ke H, Wang G, Shen J and Makino A 2022 J. Mater. Sci. Technol. 96 233
[25] Zhang B, Jia Y, Wang S, Li G, Shan S F, Zhan Z J, Liu R P and Wang W K 2009 J. Alloys Compd. 468 187
[26] Lu Z P and Liu C T 2002 Acta Mater. 50 3501
[27] Kim H S, Lee J C, Kim Y C, Lee S H, Lee B J and Ahn J P 2004 Acta Mater. 52 1525
[28] Song K K, Pauly S and Zhang Y 2011 Intermetallics 19 1394
[29] Ma Y, Xie L, Li Q, Chang C, Li H, Mu B and Ma X 2022 J. Phys. Chem. Solids 163 110596
[30] Park E S and Kim D H 2006 Acta Mater. 54 2597
[31] Pan J, Liu L and Chan K C 2009 Scr. Mater. 60 822
[32] Kim Y C, Lee J C, Cha P R, Ahn J P and Fleury E 2006 Mater. Sci. Eng. A 437 248
[33] Dong B, Zhou S, Li D, Lu C, Guo F, Ni X and Lu Z 2011 Prog. Nat. Sci.: Mater. Int. 21 164
[1] Molecular-dynamics simulations on the crystallization of Fe metallic glasses under alternating magnetic field
Yanxue Wu(吴言雪), Qiang-Qiang Pan(潘强强), Rui Ning(宁睿), and Hailong Peng(彭海龙). Chin. Phys. B, 2025, 34(7): 076402.
[2] Effect of Y element on atomic structure, glass forming ability, and magnetic properties of FeBC alloy
Jin-Hua Xiao(肖晋桦), Da-Wei Ding(丁大伟), Lin Li(李琳), Yi-Tao Sun(孙奕韬), Mao-Zhi Li(李茂枝), and Wei-Hua Wang(汪卫华). Chin. Phys. B, 2024, 33(7): 076101.
[3] Coupling of quasi-localized and phonon modes in glasses at low frequency
Jun Duan(段军), Song-Lin Cai(蔡松林), Gan Ding(丁淦), Lan-Hong Dai(戴兰宏), and Min-Qiang Jiang(蒋敏强). Chin. Phys. B, 2024, 33(5): 056502.
[4] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[5] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[6] Crystallization evolution and relaxation behavior of high entropy bulk metallic glasses using microalloying process
Danhong Li(李丹虹), Changyong Jiang(江昌勇), Hui Li(栗慧), and Mahander Pandey. Chin. Phys. B, 2021, 30(6): 066401.
[7] Hydrogen-induced dynamic slowdown of metallic glass-forming liquids
Jin-Ai Gao(高津爱), Hai-Shen Huang(黄海深), and Yong-Jun Lü(吕勇军). Chin. Phys. B, 2021, 30(6): 066301.
[8] Effect of Sn and Al additions on the microstructure and mechanical properties of amorphous Ti-Cu-Zr-Ni alloys
Fu-Chuan Chen(陈福川), Fu-Ping Dai(代富平), Xiao-Yi Yang(杨霄熠), Ying Ruan(阮莹), Bing-Bo Wei(魏炳波). Chin. Phys. B, 2020, 29(6): 066401.
[9] Structural evolution in deformation-induced rejuvenation in metallic glasses: A cavity perspective
Shaoqin Jiang(江少钦), Yong Huang(黄勇), Maozhi Li(李茂枝). Chin. Phys. B, 2019, 28(4): 046103.
[10] Ab initio molecular dynamics study on the local structures in Ce70Al30 and La70Al30 metallic glasses
F X Li(李福祥), J B Kong(孔吉波), M Z Li(李茂枝). Chin. Phys. B, 2018, 27(5): 056102.
[11] Amorphous phase formation rules in high-entropy alloys
Qiu-Wei Xing(邢秋玮), Yong Zhang(张勇). Chin. Phys. B, 2017, 26(1): 018104.
[12] LaGa-based bulk metallic glasses
Lin-Zhi Zhao(赵林志), Rong-Jie Xue(薛荣洁), Wei-Hua Wang(汪卫华), Hai-Yang Bai(白海洋). Chin. Phys. B, 2017, 26(1): 018106.
[13] Multiscale structures and phase transitions in metallic glasses: A scattering perspective
Si Lan(兰司), Zhenduo Wu(吴桢舵), Xun-Li Wang(王循理). Chin. Phys. B, 2017, 26(1): 017104.
[14] Generalized model for laser-induced surface structure in metallic glass
Lin-Mao Ye(叶林茂), Zhen-Wei Wu(武振伟), Kai-Xin Liu(刘凯欣), Xiu-Zhang Tang(汤秀章), Xiang-Ming Xiong (熊向明). Chin. Phys. B, 2016, 25(6): 068104.
[15] Mechanical behavior of Cu-Zr bulk metallic glasses (BMGs):A molecular dynamics approach
Muhammad Imran, Fayyaz Hussain, Muhammad Rashid, Yongqing Cai, S. A. Ahmad. Chin. Phys. B, 2013, 22(9): 096101.
No Suggested Reading articles found!