Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 068104    DOI: 10.1088/1674-1056/25/6/068104
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Generalized model for laser-induced surface structure in metallic glass

Lin-Mao Ye(叶林茂)1, Zhen-Wei Wu(武振伟)1,2, Kai-Xin Liu(刘凯欣)1,2, Xiu-Zhang Tang(汤秀章)3, Xiang-Ming Xiong (熊向明)1
1 LTCS and Department of Mechanics & Engineering Science, College of Engineering, Peking University, Beijing 100871, China;
2 Center for Applied Physics and Technology, Peking University, Beijing 100871, China;
3 China Institute of Atomic Energy, Beijing 102413, China
Abstract  

The details of the special three-dimensional micro-nano scale ripples with a period of hundreds of microns on the surfaces of a Zr-based and a La-based metallic glass irradiated separately by single laser pulse are investigated. We use the small-amplitude capillary wave theory to unveil the ripple formation mechanism through considering each of the molten metallic glasses as an incompressible viscous fluid. A generalized model is presented to describe the special morphology, which fits the experimental result well. It is also revealed that the viscosity brings about the biggest effect on the monotone decreasing nature of the amplitude and the wavelength of the surface ripples. The greater the viscosity is, the shorter the amplitude and the wavelength are.

Keywords:  metallic glasses      pulse laser processing      micro-nano scale surface structure      viscosity  
Received:  17 December 2015      Revised:  23 February 2016      Accepted manuscript online: 
PACS:  81.16.Rf (Micro- and nanoscale pattern formation)  
  81.05.Kf (Glasses (including metallic glasses))  
  66.20.Cy (Theory and modeling of viscosity and rheological properties, including computer simulation)  
  81.15.Fg (Pulsed laser ablation deposition)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 10572002, 10732010, and 11332002).

Corresponding Authors:  Kai-Xin Liu     E-mail:  kliu@pku.edu.cn

Cite this article: 

Lin-Mao Ye(叶林茂), Zhen-Wei Wu(武振伟), Kai-Xin Liu(刘凯欣), Xiu-Zhang Tang(汤秀章), Xiang-Ming Xiong (熊向明) Generalized model for laser-induced surface structure in metallic glass 2016 Chin. Phys. B 25 068104

[1] Hwang T Y and Guo C 2012 Appl. Phys. Lett. 101 021901
[2] Xia Y Y, Wang Q P, Mei L M, Tan C Y, Yue S B, Xu B Z and Liu X D 1991 J. Phys. D: Appl. Phys. 24 1933
[3] Hohm S, Herzlieb M, Rosenfeld A, Kruger J and Bonse J 2013 Appl. Phys. Lett. 103 254101
[4] Clark S E and Emmony D C 1989 Phys. Rev. B 40 2031
[5] Cho H, Kim S and Ki H 2012 Acta Mater. 60 6237
[6] Jarmakani H, Maddox B, Wei C T, Kalantar D and Meyers M A 2010 Acta Mater. 58 4604
[7] Zhang J C, Liu Y W, Huang C L, Zhang Q Q, Yi Y, Zeng Y, Zhu X L, Fan Q P, Qian F, Wei L, Wang H B, Wu W D and Cao L F 2014 Chin. Phys. Lett. 31 124204
[8] Liang L X, Deng Y and Wang Y 2013 Chin. Phys. Lett. 30 108104
[9] Li Y G, Yang C S, Liu J Q and Sugiyama S 2011 Chin. Phys. Lett. 28 038101
[10] Wang H P, Ke S Y, Yang J, Wang Y and Yang Y 2014 Acta Phys. Sin. 63 098104 (in Chinese)
[11] Liao Y J, Lou Y H, Wang Z K and Liao L S 2014 Chin. Phys. B 23 118508
[12] Zhao L, Jin Y R, Li J, Deng H and Zheng D N 2014 Chin. Phys. B 23 087402
[13] Hwang T Y and Guo C 2011 J. Appl. Phys. 109 083521
[14] Liu W D, Ye L M and Liu K X 2011 J. Appl. Phys. 109 043109
[15] Liu Y, Jiang M Q, Yang G W, Guan Y J and Dai L H 2011 Appl. Phys. Lett. 99 191902
[16] Lu C, Recht D and Arnold C 2013 Phys. Rev. Lett. 111 105503
[17] Wang W H 2011 Physics 40 703 (in Chinese)
[18] Sun B A and Wang W H 2015 Prog. Mater Sci. 74 211
[19] Vogel A, Noack J, Huettmann G and Paltauf G 2005 Appl. Phys. B: Lasers Opt. 81 1015
[20] Kelly R, Cuomo JJ, Leary P A, Rothenberg J E, Braren B E and Aliotta C F 1985 Nucl. Instrum. Methods Phys. Res. B 9 329
[21] Pirri A N 1977 Phys. Fluids 20 221
[22] Phipps C R, Turner T P, Harrison R F, York G W, Osborne W Z, Anderson G K, Corlis X F, Haynes L C, Steele H S, Spicochi K C and King T R 1998 J. Appl. Phys. 64 1083
[23] Chen H S 1980 Rep. Prog. Phys. 43 353
[24] Busch R, Bake E and Johnson W L 1998 Acta Mater. 46 4725
[25] Yamasaki T, Maeda S, Yokoyama Y, Okai D, FukamiT, Kimura H M and Inoue A 2006 Intermetallics 14 1102
[26] Takeuchi A, Kato H and Inoue A 2010 Intermetallics 18 406
[27] Milne-Thomson L M 1960 Theoretical Hydrodynamic (London: Macmillan & Co. Ltd.)
[28] Landau L D and Lifshitz E M 1987 Fluid Mechanics (Oxford: Pergamon Press)
[29] Chattopadhyay C, Sangal S andMondal K 2014 Bull. Mater. Sci. 37 83
[1] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[2] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[3] Shedding vortex simulation method based on viscous compensation technology research
Hao Zhou(周昊), Lei Wang(汪雷), Zhang-Feng Huang(黄章峰), and Jing-Zhi Ren(任晶志). Chin. Phys. B, 2022, 31(4): 044702.
[4] Hydrogen-induced dynamic slowdown of metallic glass-forming liquids
Jin-Ai Gao(高津爱), Hai-Shen Huang(黄海深), and Yong-Jun Lü(吕勇军). Chin. Phys. B, 2021, 30(6): 066301.
[5] Crystallization evolution and relaxation behavior of high entropy bulk metallic glasses using microalloying process
Danhong Li(李丹虹), Changyong Jiang(江昌勇), Hui Li(栗慧), and Mahander Pandey. Chin. Phys. B, 2021, 30(6): 066401.
[6] A simplified approximate analytical model for Rayleigh-Taylor instability in elastic-plastic solid and viscous fluid with thicknesses
Xi Wang(王曦), Xiao-Mian Hu(胡晓棉), Sheng-Tao Wang(王升涛), and Hao Pan(潘昊). Chin. Phys. B, 2021, 30(4): 044702.
[7] Effect of Sn and Al additions on the microstructure and mechanical properties of amorphous Ti-Cu-Zr-Ni alloys
Fu-Chuan Chen(陈福川), Fu-Ping Dai(代富平), Xiao-Yi Yang(杨霄熠), Ying Ruan(阮莹), Bing-Bo Wei(魏炳波). Chin. Phys. B, 2020, 29(6): 066401.
[8] Structural evolution in deformation-induced rejuvenation in metallic glasses: A cavity perspective
Shaoqin Jiang(江少钦), Yong Huang(黄勇), Maozhi Li(李茂枝). Chin. Phys. B, 2019, 28(4): 046103.
[9] Improved dielectric and electro-optical parameters of nematic liquid crystal doped with magnetic nanoparticles
Geeta Yadav, Govind Pathak, Kaushlendra Agrahari, Mahendra Kumar, Mohd Sajid Khan, V S Chandel, Rajiv Manohar. Chin. Phys. B, 2019, 28(3): 034209.
[10] Ab initio molecular dynamics study on the local structures in Ce70Al30 and La70Al30 metallic glasses
F X Li(李福祥), J B Kong(孔吉波), M Z Li(李茂枝). Chin. Phys. B, 2018, 27(5): 056102.
[11] General equation describing viscosity of metallic melts under horizontal magnetic field
Yipeng Xu(许亦鹏), Xiaolin Zhao(赵晓林), Tingliang Yan(颜廷亮). Chin. Phys. B, 2017, 26(3): 036601.
[12] Amorphous phase formation rules in high-entropy alloys
Qiu-Wei Xing(邢秋玮), Yong Zhang(张勇). Chin. Phys. B, 2017, 26(1): 018104.
[13] Abnormal breakdown of Stokes-Einstein relation in liquid aluminium
Chen-Hui Li (李晨辉), Xiu-Jun Han(韩秀君), Ying-Wei Luan(栾英伟), Jian-Guo Li(李建国). Chin. Phys. B, 2017, 26(1): 016102.
[14] LaGa-based bulk metallic glasses
Lin-Zhi Zhao(赵林志), Rong-Jie Xue(薛荣洁), Wei-Hua Wang(汪卫华), Hai-Yang Bai(白海洋). Chin. Phys. B, 2017, 26(1): 018106.
[15] Multiscale structures and phase transitions in metallic glasses: A scattering perspective
Si Lan(兰司), Zhenduo Wu(吴桢舵), Xun-Li Wang(王循理). Chin. Phys. B, 2017, 26(1): 017104.
No Suggested Reading articles found!