Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 086106    DOI: 10.1088/1674-1056/adce9e
Special Issue: SPECIAL TOPIC — Structures and properties of materials under high pressure
SPECIAL TOPIC — Structures and properties of materials under high pressure Prev   Next  

Pressure-induced band gap closing of lead-free halide double perovskite (CH3NH3)2PtI6

Siyu Hou(侯思羽)1, Jiaxiang Wang(王家祥)1, Yijia Huang(黄乙甲)1, Ruijing Fu(付瑞净)2,†, and Lingrui Wang(王玲瑞)1,‡
1 Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China;
2 School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
Abstract  Lead-free halide double perovskites have recently attracted significant attention due to their exceptional stability and favorable band gaps, making them promising candidates for solar cell applications. However, the relationship between their structural characteristics and intrinsic band gap remains under-explored. This study presents a method to investigate the structure-band gap correlation in a typical halide double perovskite, MA$_{2}$PtI$_{6}$ (MA$^{+} =$CH$_{3}$NH$_{3}^{+}$), using high pressure techniques. The band gap of MA$_{2}$PtI$_{6}$ is effectively reduced at two different rates of 0.063 eV/GPa and 0.079 eV/GPa before and after 1.2 GPa, and progressively closes as pressure further increases. These optical changes are closely related to the pressure induced structural evolution of MA$_{2}$PtI$_{6}$. Moreover, a phase transition from trigonal ($R$-3$m$) to monoclinic ($P$2/$m$) occurs at 1.2 GPa and completes by 2.0 GPa, driven by pressure-induced distortion of the [PtI$_{6}$]$^{2-}$ octahedra, which is responsible for the variation of the band gap. These promising findings pave the way for potential applications in the structural and band gap tuning of halide double perovskites.
Keywords:  halide double perovskites      high pressure      band gap closing      phase transition  
Received:  27 February 2025      Revised:  17 April 2025      Accepted manuscript online:  21 April 2025
PACS:  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  62.50.-p (High-pressure effects in solids and liquids)  
  78.40.Fy (Semiconductors)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 12474414), the Natural Science Foundation of Henan (Grant No. 242300421157), and the ADXRD measurement was performed at the 4W2 beamline, the Beijing Synchrotron Radiation Facility (BSRF).
Corresponding Authors:  Ruijing Fu, Lingrui Wang     E-mail:  ruijingfu_wyu@163.com;wanglr@zzu.edu.cn

Cite this article: 

Siyu Hou(侯思羽), Jiaxiang Wang(王家祥), Yijia Huang(黄乙甲), Ruijing Fu(付瑞净), and Lingrui Wang(王玲瑞) Pressure-induced band gap closing of lead-free halide double perovskite (CH3NH3)2PtI6 2025 Chin. Phys. B 34 086106

[1] Igbari F, Wang Z K and Liao L S 2019 Adv. Energy Mater. 9 1803150
[2] Zhao X G, Yang D, Ren J C, Sun Y, Xiao Z and Zhang L 2018 Joule 2 1662
[3] Wolf N R, Connor B A, Slavney A H and Karunadasa H I 2021 Angew. Chem. Int. Ed. 60 16264
[4] Lee B, Stoumpos C C, Zhou N, Hao F, Malliakas C, Yeh C Y, Marks T J, Kanatzidis M G and Chang R P H 2014 J. Am. Chem. Soc. 136 15379
[5] Chu Y, Hu Y and Xiao Z 2021 J. Phys. Chem. C 125 9688
[6] Zhao X G, Yang J H, Fu Y, Yang D, Xu Q, Yu L,Wei S H and Zhang L 2017 J. Am. Chem. Soc. 139 2630
[7] Qiu X, Cao B, Yuan S, Chen X, Qiu Z, Jiang Y, Ye Q, Wang H, Zeng H, Liu J and Kanatzidis M G 2017 Sol. Energy Mater. Sol. Cells 159 227
[8] Kong L, Liu G, Gong J, Mao L, Chen M, Hu Q, Lü X, Yang W, Kanatzidis M G and Mao H K 2020 Proc. Natl. Acad. Sci. USA 117 16121
[9] Ma Z, Liu Z, Lu S, Wang L, Feng X, Yang D, Wang K, Xiao G, Zhang L, Redfern S A T and Zou B 2018 Nat. Commun. 9 4506
[10] Guo S, Mihalyi-Koch W, Mao Y, Li X, Bu K, Hong H, Hautzinger M P, Luo H, Wang D, Gu J, Zhang Y, Zhang D, Hu Q, Ding Y, Yang W, Fu Y, Jin S and Lü X 2024 Nat. Commun. 15 3001
[11] Lü X,Wang Y, Stoumpos C C, Hu Q, Guo X, Chen H, Yang L, Smith J S, Yang W, Zhao Y, Xu H, Kanatzidis M G and Jia Q 2016 Adv. Mater. 28 8663
[12] Wang J, Wang L, Li Y, Fu R, Feng Y, Chang D, Yuan Y, Gao H, Jiang S, Wang F, Guo E, Cheng J, Wang K, Guo H and Zou B 2022 Adv. Sci. 9 2203442
[13] Wang J, Yuan Y, Liu C, Fu R, Wang L, Zhang F, Ma L, Jiang S, Shi Z and Guo H 2023 Phys. Rev. B 107 214111
[14] Zhao D, Xiao G, Liu Z, Sui L, Yuan K, Ma Z and Zou B 2021 Adv. Mater. 33 2100323
[15] Sun X, Wu M, Yu X, Li Q, Xiao G, Wang K and Zou B 2024 Adv. Sci. 11 2306937
[16] Li Q,Wang Y, PanW, YangW, Zou B, Tang J and Quan Z 2017 Angew. Chem. Int. Ed. 56 15969
[17] Li Q, Li S, Wang K, Quan Z, Meng Y and Zou B 2017 J. Phys. Chem. Lett. 8 500
[18] Wang L, Yao P, Wang F, Li S, Chen Y, Xia T, Guo E, Wang K, Zou B and Guo H 2020 Adv. Sci. 7 1902900
[19] Meng L, Vu T V, Criscenti L J, Ho T A, Qin Y and Fan H 2023 Chem. Rev. 123 10206
[20] Evans H A, Fabini D H, Andrews J L, Koerner M, Preefer M B, Wu G, Wudl F, Cheetham A K and Seshadri R 2018 Inorg. Chem. 57 10375
[21] Fu R, Chen Y, Yong X, Ma Z, Wang L, Lv P, Lu S, Xiao G and Zou B 2019 Nanoscale 11 17004
[22] Tauc J, Grigorovici R and Vancu A 1966 Phys. Stat. Sol. (b) 15 627
[23] Liu D, Zhang C and Sa R 2022 Phys. B: Condens. Matter 644 414235
[24] Bu K, Feng X, Wang D, et al. 2024 J. Am. Chem. Soc. 146 22469
[25] Li Q, Xu B, Chen Z, Han J, Tan L, Luo Z, Shen P and Quan Z 2021 Adv. Funct. Mater. 31 2104923
[26] Cao Y, Qi G, Sui L, et al. 2020 ACS Mater. Lett. 2 381
[27] Togo A and Tanaka I 2013 Phys. Rev. B 87 184104
[28] Feng C, Zhao Q, Wu C, Luo X, Li S, Li D, Tang G, Zhang G 2022 J. Phys. Chem. Lett. 13 1077
[29] Szafrański M 2024 J. Mater. Chem. A 12 2391
[30] Cliffe M J and Goodwin A L 2012 J. Appl. Crystallogr. 45 1321
[31] Katsura T and Tange Y 2019 Minerals 9 745
[32] Hamaguchi H O 1978 J. Chem. Phys. 69 569
[33] Tian C, Liang Y, ChenW, Huang Y, Huang X, Tian F and Yang X 2020 Phys. Chem. Chem. Phys. 22 1841
[34] Wang J,Wang L,Wang F, Jiang S and Guo H 2021 Phys. Chem. Chem. Phys. 23 19308
[35] Wang L, Wang K, Xiao G, Zeng Q and Zou B 2016 J. Phys. Chem. Lett. 7 5273
[36] Mao Y, Guo S, Huang X, et al. 2023 J. Am. Chem. Soc. 145 23842
[1] Corrigendum to “Multi-functional photonic spin Hall effect sensor controlled by phase transition”
Jie Cheng(程杰), Rui-Zhao Li(李瑞昭), Cheng Cheng(程骋), Ya-Lin Zhang(张亚林), Sheng-Li Liu(刘胜利), and Peng Dong(董鹏). Chin. Phys. B, 2025, 34(9): 099901.
[2] Pressure-stabilized Li2K electride with superconducting behavior
Xiao-Zhen Yan(颜小珍), Quan-Xian Wu(邬泉县), Lei-Lei Zhang(张雷雷), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2025, 34(9): 097405.
[3] Structural evolution and bandgap modification of a robust mixed-valence compound Eu9MgS2B20O41 under pressure
Boyang Fu(符博洋), Wenfeng Zhou(周文风), Fuyang Liu(刘扶阳), Luhong Wang(王鲁红), Haozhe Liu(刘浩哲), Sheng-Ping Guo(郭胜平), and Weizhao Cai(蔡伟照). Chin. Phys. B, 2025, 34(8): 086102.
[4] Low-temperature photoluminescence study of optical centers in HPHT-diamonds
Liangchao Chen(陈良超), Xinyuan Miao(苗辛原), Zhuangfei Zhang(张壮飞), Biao Wan(万彪), Yuewen Zhang(张跃文), Qianqian Wang(王倩倩), Longsuo Guo(郭龙锁), and Chao Fang(房超). Chin. Phys. B, 2025, 34(8): 086103.
[5] Heterogeneous TiC-based composite ceramics with high toughness
Xiaoci Ma(马孝慈), Yufei Ge(葛雨非), Yutong Hou(侯语同), Keyu Shi(施柯羽), Jiaqi Zhang(张佳琪), Gaoping Yue(岳高平), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 086104.
[6] Synergistic improvements in mechanical and thermal performance of TiB2 solid-solution-based composites
Zhuang Li(李壮), Cun You(由存), Zhihui Li(李志慧), Xuepeng Li(李雪鹏), Guiqian Sun(孙贵乾), Xinglin Wang(王星淋), Qi Jia(贾琪), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 086105.
[7] First-principles study on structural, electronic, and superconducting properties of Laves-phase alloy HfZn2 under pressure
Xiao Ma(马晓), Tao Wang(王涛), Jianfeng Wen(文剑锋), Zhenwei Zhou(周振玮), and Hongyu Zhu(朱红玉). Chin. Phys. B, 2025, 34(8): 086108.
[8] Structure and properties of MgO melt at high pressure: A first-principles study
Min Wu(吴旻) and Zhongsen Sun(孙忠森). Chin. Phys. B, 2025, 34(8): 086301.
[9] Pressure distribution imaging through wide-field optical detected magnetic resonance
Chaofan Lv(吕超凡), Kai Ma(马凯), Feihu Lei(雷飞虎), Yidan Qu(屈怡丹), Qilong Wu(吴琦隆), Wuyou Zhang(张吾优), Yingjie Zhang(张英杰), Huihui Yu(余辉辉), Xuanming Shen(申炫铭), Yuan Zhang(张元), Xigui Yang(杨西贵), and Chongxin Shan(单崇新). Chin. Phys. B, 2025, 34(8): 087601.
[10] High pressure growth of transition-metal monosilicide RhGe single crystals
Xiangjiang Dong(董祥江), Bowen Zhang(张博文), Xubin Ye(叶旭斌), Peng Wei(魏鹏), Lei Lian(廉磊), Ning Sun(孙宁), Youwen Long(龙有文), Shangjie Tian(田尚杰), Shouguo Wang(王守国), Hechang Lei(雷和畅), and Runze Yu(于润泽). Chin. Phys. B, 2025, 34(8): 088101.
[11] Theoretical investigation on the H sublattice in CaH6 and energetic performance
Zhihong Huang(黄植泓), Nan Li(李楠), Jun Zhang(张俊), Xiuyuan Li(李修远), Zihuan Peng(彭梓桓), Chongwen Jiang(江崇文), and Changqing Jin(靳常青). Chin. Phys. B, 2025, 34(8): 086202.
[12] High thermoelectric performance of SnS under high pressure and high temperature
Yuqi Gao(高语崎), Xinglin Wang(王星淋), Cun You(由存), Dianzhen Wang(王殿振), Nan Gao(高楠), Qi Jia(贾琪), Zhihui Li(李志慧), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 087201.
[13] Pressure dependent excited state dynamics behavior in CzCNDSB
Guang-Jing Hou(侯广静), Ting-Ting Wang(王亭亭), Cun-Fang Feng(冯存方), Hong-Yu Tu(屠宏宇), Yu Zhang(张宇), Fang-Fei Li(李芳菲), Ying-Hui Wang(王英惠), Ping Lu(路萍), Tian Cui(崔田), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2025, 34(8): 087801.
[14] High-pressure studies on quasi-one-dimensional systems
Wenhui Liu(刘雯慧), Jiajia Feng(冯嘉嘉), Wei Zhou(周苇), Sheng Li(李升), and Zhixiang Shi(施智祥). Chin. Phys. B, 2025, 34(8): 088104.
[15] Graph neural networks unveil universal dynamics in directed percolation
Ji-Hui Han(韩继辉), Cheng-Yi Zhang(张程义), Gao-Gao Dong(董高高), Yue-Feng Shi(石月凤), Long-Feng Zhao(赵龙峰), and Yi-Jiang Zou(邹以江). Chin. Phys. B, 2025, 34(8): 080702.
No Suggested Reading articles found!