Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 086108    DOI: 10.1088/1674-1056/ade5a1
Special Issue: SPECIAL TOPIC — Structures and properties of materials under high pressure
SPECIAL TOPIC — Structures and properties of materials under high pressure Prev   Next  

First-principles study on structural, electronic, and superconducting properties of Laves-phase alloy HfZn2 under pressure

Xiao Ma(马晓)1, Tao Wang(王涛)2, Jianfeng Wen(文剑锋)2, Zhenwei Zhou(周振玮)2, and Hongyu Zhu(朱红玉)2,†
1 College of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China;
2 College of Physics and Electronic Information Engineering, Guilin University of Technology, Guilin 541006, China
Abstract  Laves-phase are among the most abundant groups of alloys with chemical formula AB2, known for their high-temperature strength and potential application in hydrogen storage. The Laves-phase generally acts as a strengthening agent, which enhances the strength and durability of alloys at extreme conditions. Consequently, the properties of Laves-phase alloys at extreme conditions attract wide attention. In this study, we investigated the high-pressure phase diagram of Laves-phase alloy HfZn$_{2}$, and discovered a phase transition from $C$15 (space group $Fd\overline{3}m$) phase to $C$14 (space group $P$6$_{3}$/mmc) phase at a pressure above 20 GPa. Based on ab initio simulations, the mechanical, chemical bonding and superconducting properties of high-pressure phase HfZn$_{2}$ were predicted. The ratio of bulk modulus to shear modulus ($B/G$), a key indicator of mechanical properties in alloys, increases from 1.86 to 4.09 within the pressure range of 50-250 GPa, indicating excellent ductility of the $ C$14 phase of HfZn$_{2}$ under high pressure. Additionally, Zn gains approximately 0.43 electron from Hf at 10 GPa, and the superconducting critical temperature of HfZn$_{2}$ is estimated to be around 0.55 K at 50 GPa. Given that both $C$14 and $C$15 phases are common structures in Laves-phase alloys, elucidating the high-pressure behaviors of $C$14 and $C$15 phases of HfZn$_{2}$ will enhance the fundamental understanding of properties and potential applications at extreme conditions of Laves-phase alloys.
Keywords:  Laves-phase alloy      high pressure      phase transition      density function theory  
Received:  30 May 2025      Revised:  13 June 2025      Accepted manuscript online:  18 June 2025
PACS:  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  31.15.E (Density-functional theory)  
  71.20.Be (Transition metals and alloys)  
Fund: Project supported by the Guangxi Natural Science Foundation (Grant Nos. 2025GXNSFAA069277 and GuikeAD23026204).
Corresponding Authors:  Hongyu Zhu     E-mail:  zhuhy@glut.edu.cn

Cite this article: 

Xiao Ma(马晓), Tao Wang(王涛), Jianfeng Wen(文剑锋), Zhenwei Zhou(周振玮), and Hongyu Zhu(朱红玉) First-principles study on structural, electronic, and superconducting properties of Laves-phase alloy HfZn2 under pressure 2025 Chin. Phys. B 34 086108

[1] Liu C T, Zhu J H, Brady M P, McKamey C G and Pike L M 2000 Intermetallics 8 1119
[2] Yang Q S, Ruan B B, Zhou M H, Gu Y D, Ma MW, Chen G F and Ren Z A 2023 Chin. Phys. B 32 017402
[3] Yartys V A and Lototskyy M V 2022 J. Alloys Compd. 916 165219
[4] Santi G, Dugdale S B and Jarlborg T 2001 Phys. Rev. Lett. 87 247004
[5] Jain H and Saad M 1983 Hyperfine Interact. 16 805
[6] Foster K, E H J, G L R and Skripov V A 2000 Philos. Mag. B 80 1667
[7] Sun N, Zhang X, Qin J, Ning J, Zhang S, Liang S, Ma M and Liu R 2014 J. Appl. Phys. 115 083514
[8] Li G J, Shi L T, Hu C E, Cheng Y and Ji G F 2018 Acta Phys. Pol. A 133 1299
[9] RahmanMA, RahmanMA and RahamanMZ 2015 arXiv:1510.04944[cond-mat.mtrl-sci]
[10] Rahaman M Z and Rahman M A 2016 arXiv:1605.04841[condmat. mtrl-sci]
[11] Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063
[12] Glass C W, Oganov A R and Hansen N 2006 Comput. Phys. Commun. 175 713
[13] Oganov A R, Lyakhov A O and Valle M 2011 Acc. Chem. Res. 44 227
[14] Hafner J 2008 J. Comput. Chem. 29 2044
[15] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[16] Wang T, Wen M H, Zhang X X, Wang W H, Liu J M, Wang X Y and Li P F 2025 Chin. Phys. B 34 036104
[17] Fan L L, Liu X, Gao C, Liu Z L, Li Y L and Huang H J 2025 Chin. Phys. B 32 079101
[18] Togo A, Chaput L, Tadano T and Tanaka I 2023 J. Phys.: Condens. Matter 35 353001
[19] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M and Dabo I 2009 J. Phys.: Condens. Matter 21 395502
[20] Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104
[21] Huang H H, Fan X, Yang G M, Singh D J and Zheng W T 2018 Comput. Mater. Sci. 144 147
[22] Chung D H and Buessem W R 1967 J. Appl. Phys. 38 2535
[23] Sun Z, Li S, Ahuja R and Schneider J M 2004 Solid State Commun. 129 589
[24] Savin A, Nesper R, Wengert S and Fässler T F 1997 Angew. Chem. Int. Ed. 36 1808
[1] Corrigendum to “Multi-functional photonic spin Hall effect sensor controlled by phase transition”
Jie Cheng(程杰), Rui-Zhao Li(李瑞昭), Cheng Cheng(程骋), Ya-Lin Zhang(张亚林), Sheng-Li Liu(刘胜利), and Peng Dong(董鹏). Chin. Phys. B, 2025, 34(9): 099901.
[2] Pressure-stabilized Li2K electride with superconducting behavior
Xiao-Zhen Yan(颜小珍), Quan-Xian Wu(邬泉县), Lei-Lei Zhang(张雷雷), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2025, 34(9): 097405.
[3] Structural evolution and bandgap modification of a robust mixed-valence compound Eu9MgS2B20O41 under pressure
Boyang Fu(符博洋), Wenfeng Zhou(周文风), Fuyang Liu(刘扶阳), Luhong Wang(王鲁红), Haozhe Liu(刘浩哲), Sheng-Ping Guo(郭胜平), and Weizhao Cai(蔡伟照). Chin. Phys. B, 2025, 34(8): 086102.
[4] Low-temperature photoluminescence study of optical centers in HPHT-diamonds
Liangchao Chen(陈良超), Xinyuan Miao(苗辛原), Zhuangfei Zhang(张壮飞), Biao Wan(万彪), Yuewen Zhang(张跃文), Qianqian Wang(王倩倩), Longsuo Guo(郭龙锁), and Chao Fang(房超). Chin. Phys. B, 2025, 34(8): 086103.
[5] Heterogeneous TiC-based composite ceramics with high toughness
Xiaoci Ma(马孝慈), Yufei Ge(葛雨非), Yutong Hou(侯语同), Keyu Shi(施柯羽), Jiaqi Zhang(张佳琪), Gaoping Yue(岳高平), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 086104.
[6] Synergistic improvements in mechanical and thermal performance of TiB2 solid-solution-based composites
Zhuang Li(李壮), Cun You(由存), Zhihui Li(李志慧), Xuepeng Li(李雪鹏), Guiqian Sun(孙贵乾), Xinglin Wang(王星淋), Qi Jia(贾琪), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 086105.
[7] Structure and properties of MgO melt at high pressure: A first-principles study
Min Wu(吴旻) and Zhongsen Sun(孙忠森). Chin. Phys. B, 2025, 34(8): 086301.
[8] Pressure distribution imaging through wide-field optical detected magnetic resonance
Chaofan Lv(吕超凡), Kai Ma(马凯), Feihu Lei(雷飞虎), Yidan Qu(屈怡丹), Qilong Wu(吴琦隆), Wuyou Zhang(张吾优), Yingjie Zhang(张英杰), Huihui Yu(余辉辉), Xuanming Shen(申炫铭), Yuan Zhang(张元), Xigui Yang(杨西贵), and Chongxin Shan(单崇新). Chin. Phys. B, 2025, 34(8): 087601.
[9] High pressure growth of transition-metal monosilicide RhGe single crystals
Xiangjiang Dong(董祥江), Bowen Zhang(张博文), Xubin Ye(叶旭斌), Peng Wei(魏鹏), Lei Lian(廉磊), Ning Sun(孙宁), Youwen Long(龙有文), Shangjie Tian(田尚杰), Shouguo Wang(王守国), Hechang Lei(雷和畅), and Runze Yu(于润泽). Chin. Phys. B, 2025, 34(8): 088101.
[10] Theoretical investigation on the H sublattice in CaH6 and energetic performance
Zhihong Huang(黄植泓), Nan Li(李楠), Jun Zhang(张俊), Xiuyuan Li(李修远), Zihuan Peng(彭梓桓), Chongwen Jiang(江崇文), and Changqing Jin(靳常青). Chin. Phys. B, 2025, 34(8): 086202.
[11] High thermoelectric performance of SnS under high pressure and high temperature
Yuqi Gao(高语崎), Xinglin Wang(王星淋), Cun You(由存), Dianzhen Wang(王殿振), Nan Gao(高楠), Qi Jia(贾琪), Zhihui Li(李志慧), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 087201.
[12] Pressure dependent excited state dynamics behavior in CzCNDSB
Guang-Jing Hou(侯广静), Ting-Ting Wang(王亭亭), Cun-Fang Feng(冯存方), Hong-Yu Tu(屠宏宇), Yu Zhang(张宇), Fang-Fei Li(李芳菲), Ying-Hui Wang(王英惠), Ping Lu(路萍), Tian Cui(崔田), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2025, 34(8): 087801.
[13] High-pressure studies on quasi-one-dimensional systems
Wenhui Liu(刘雯慧), Jiajia Feng(冯嘉嘉), Wei Zhou(周苇), Sheng Li(李升), and Zhixiang Shi(施智祥). Chin. Phys. B, 2025, 34(8): 088104.
[14] Pressure-induced band gap closing of lead-free halide double perovskite (CH3NH3)2PtI6
Siyu Hou(侯思羽), Jiaxiang Wang(王家祥), Yijia Huang(黄乙甲), Ruijing Fu(付瑞净), and Lingrui Wang(王玲瑞). Chin. Phys. B, 2025, 34(8): 086106.
[15] Graph neural networks unveil universal dynamics in directed percolation
Ji-Hui Han(韩继辉), Cheng-Yi Zhang(张程义), Gao-Gao Dong(董高高), Yue-Feng Shi(石月凤), Long-Feng Zhao(赵龙峰), and Yi-Jiang Zou(邹以江). Chin. Phys. B, 2025, 34(8): 080702.
No Suggested Reading articles found!