Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 040201    DOI: 10.1088/1674-1056/ad11e6
GENERAL   Next  

Quantum control based on three forms of Lyapunov functions

Guo-Hui Yu(俞国慧) and Hong-Li Yang(杨洪礼)
College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China
Abstract  This paper introduces the quantum control of Lyapunov functions based on the state distance, the mean of imaginary quantities and state errors. In this paper, the specific control laws under the three forms are given. Stability is analyzed by the LaSalle invariance principle and the numerical simulation is carried out in a 2D test system. The calculation process for the Lyapunov function is based on a combination of the average of virtual mechanical quantities, the particle swarm algorithm and a simulated annealing algorithm. Finally, a unified form of the control laws under the three forms is given.
Keywords:  quantum system      Lyapunov function      particle swarm optimization      simulated annealing algorithms      quantum control  
Received:  19 September 2023      Revised:  21 November 2023      Accepted manuscript online:  04 December 2023
PACS:  02.30.Hq (Ordinary differential equations)  
  03.65.-w (Quantum mechanics)  
  03.65.Aa (Quantum systems with finite Hilbert space)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62176140).
Corresponding Authors:  Hong-Li Yang     E-mail:  yhlmath@126.com

Cite this article: 

Guo-Hui Yu(俞国慧) and Hong-Li Yang(杨洪礼) Quantum control based on three forms of Lyapunov functions 2024 Chin. Phys. B 33 040201

[1] Planck M 2002 AIP Conference Proceedings 610 815
[5] French S 2000 AIP Conference Proceedings 545 305
[6] Cooper M J 2000 AIP Conference Proceedings 506 18
[7] Vinokurov N A 2001 AIP Conference Proceedings 592 390
[8] Peck E F and Walters S 1963 Electrical Engineering 82 41
[9] Reick F G 1965 Applied Optics 4 1395
[10] Guardabassi G, Locatelli A and Rinaldi S 1968 IEEE Transactions on Automatic Control 13 442
[11] Sawaragi Y, Inoue K and Asai K 1969 Automatica 5 389
[12] Taiki S, Satoru Y, Shigeaki N, Hosseini L E, Kenji S, Koji M, Kazuo T, Daisuke S, Kazunobu S and Takeji T 2021 Applied Magnetic Resonance 53 1
[13] Morzhin O V and Pechen A N 2021 Proceedings of the Steklov Institute of Mathematics 313 149
[14] Kay L E and Prestegard J H 1987 J. Am. Chem. Soc. 109 3829
[15] Volk A, Mispelter J, Dimicoli J L, Papamichael E and Sakarellos C 1988 Magnetic Resonance in Chemistry 26 78
[16] He H, Yang P F, Zhang P F, Li G and Zhang T C 2023 Frontiers of Physics 18 61303
[17] Mansuripur M and Wright E M 2023 American Journal of Physics 91 298
[18] Nosik V L 2023 Crystallography Reports 67 813
[19] Hu X, Zhang Y, Ding T, Liu J and Zhao H 2020 Frontiers in bioengineering and biotechnology 8 990
[20] Tomohiro A, Takamichi H, Takahiro F, Shinnosuke H, Ryuhei Y and Tomohiro N 2020 Nanomaterials 10 1699
[21] Hou S C and Yi X X 2020 Quantum Information Processing 19 8
[22] Zhao X L, Shi Z C, Qin M and Yi X X 2017 J. Phys. B:Atom. Mol. Opt. Phys. 50 015301
[23] Cong S, Meng F and Kuang S 2014 IFAC Proceedings 47 9991
[24] Sen K and Shuang C 2007 Automatica 44 98
[25] Pandey A K, Sharma A, Sharma P D, Bal C S and Kumar R 2022 World Journal of Nuclear Medicine 21 276
[26] Turinici G 2007 International Series of Numerical Mathematics 155 293
[27] Mirrahimi M, Rouchon P and Turinici G 2005 Automatica 41 1987
[1] Parameter estimation in n-dimensional massless scalar field
Ying Yang(杨颖) and Jiliang Jing(荆继良). Chin. Phys. B, 2024, 33(3): 030307.
[2] Identifying influential spreaders in social networks: A two-stage quantum-behaved particle swarm optimization with Lévy flight
Pengli Lu(卢鹏丽), Jimao Lan(揽继茂), Jianxin Tang(唐建新), Li Zhang(张莉), Shihui Song(宋仕辉), and Hongyu Zhu(朱虹羽). Chin. Phys. B, 2024, 33(1): 018901.
[3] FPGA based hardware platform for trapped-ion-based multi-level quantum systems
Ming-Dong Zhu(朱明东), Lin Yan(闫林), Xi Qin(秦熙),Wen-Zhe Zhang(张闻哲), Yiheng Lin(林毅恒), and Jiangfeng Du(杜江峰). Chin. Phys. B, 2023, 32(9): 090702.
[4] Rapid stabilization of stochastic quantum systems in a unified framework
Jie Wen(温杰), Fangmin Wang(王芳敏), Yuanhao Shi(史元浩), Jianfang Jia(贾建芳), and Jianchao Zeng(曾建潮). Chin. Phys. B, 2023, 32(7): 070203.
[5] Probing the effects of lithium doping on structures, properties, and stabilities of magnesium cluster anions
Xiao-Yi Zhang(张小义), Ya-Ru Zhao(赵亚儒), Hong-Xing Li(李红星), Kai-Ge Cheng(成凯格), Zi-Rui Liu(刘子锐), Zhi-Ping Liu(刘芷萍), and Hang He(何航). Chin. Phys. B, 2023, 32(6): 066102.
[6] Reconstruction and stability of Fe3O4(001) surface: An investigation based on particle swarm optimization and machine learning
Hongsheng Liu(柳洪盛), Yuanyuan Zhao(赵圆圆), Shi Qiu(邱实), Jijun Zhao(赵纪军), and Junfeng Gao(高峻峰). Chin. Phys. B, 2023, 32(5): 056802.
[7] Angular insensitive nonreciprocal ultrawide band absorption in plasma-embedded photonic crystals designed with improved particle swarm optimization algorithm
Yi-Han Wang(王奕涵) and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044207.
[8] Comparison of differential evolution, particle swarm optimization, quantum-behaved particle swarm optimization, and quantum evolutionary algorithm for preparation of quantum states
Xin Cheng(程鑫), Xiu-Juan Lu(鲁秀娟), Ya-Nan Liu(刘亚楠), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(2): 020202.
[9] Inatorial forecasting method considering macro and micro characteristics of chaotic traffic flow
Yue Hou(侯越), Di Zhang(张迪), Da Li(李达), and Ping Yang(杨萍). Chin. Phys. B, 2023, 32(10): 100508.
[10] Geometric discord of tripartite quantum systems
Chunhe Xiong(熊春河), Wentao Qi(齐文韬), Maoke Miao(缪茂可), and Minghui Wu(吴明晖). Chin. Phys. B, 2023, 32(10): 100301.
[11] Simulating the resonance-mediated (1+2)-three-photon absorption enhancement in Pr3+ ions by a rectangle phase modulation
Wenjing Cheng(程文静), Yuan Li(李媛), Hongzhen Qiao(乔红贞), Meng Wang(王蒙), Shaoshuo Ma(马绍朔), Fangjie Shu(舒方杰), Chuanqi Xie(解传奇), and Guo Liang(梁果). Chin. Phys. B, 2022, 31(6): 063201.
[12] Geometric phase under the Unruh effect with intermediate statistics
Jun Feng(冯俊), Jing-Jun Zhang(张精俊), and Qianyi Zhang(张倩怡). Chin. Phys. B, 2022, 31(5): 050312.
[13] Dynamical learning of non-Markovian quantum dynamics
Jintao Yang(杨锦涛), Junpeng Cao(曹俊鹏), and Wen-Li Yang(杨文力). Chin. Phys. B, 2022, 31(1): 010314.
[14] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[15] Fine-grained uncertainty relation for open quantum system
Shang-Bin Han(韩尚斌), Shuai-Jie Li(李帅杰), Jing-Jun Zhang(张精俊), and Jun Feng(冯俊). Chin. Phys. B, 2021, 30(6): 060315.
No Suggested Reading articles found!