Special Issue:
SPECIAL TOPIC — Quantum computing and quantum sensing
|
SPECIAL TOPIC — Quantum computing and quantum sensing |
Prev
Next
|
|
|
Nonlinear time-reversal interferometry with arbitrary quadratic collective-spin interaction |
Zhiyao Hu(胡知遥)1,2,†, Qixian Li(李其贤)1,†, Xuanchen Zhang(张轩晨)1,†, He-Bin Zhang(张贺宾)1, Long-Gang Huang(黄龙刚)1,3, and Yong-Chun Liu(刘永椿)1,4,‡ |
1 State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China; 2 School of Physics, Xi'an Jiaotong University, Xi'an 710049, China; 3 China Fire and Rescue Institute, Beijing 102202, China; 4 Frontier Science Center for Quantum Information, Beijing 100084, China |
|
|
Abstract Atomic nonlinear interferometry has wide applications in quantum metrology and quantum information science. Here we propose a nonlinear time-reversal interferometry scheme with high robustness and metrological gain based on the spin squeezing generated by arbitrary quadratic collective-spin interaction, which could be described by the Lipkin-Meshkov-Glick (LMG) model. We optimize the squeezing process, encoding process, and anti-squeezing process, finding that the two particular cases of the LMG model, one-axis twisting and two-axis twisting outperform in robustness and precision, respectively. Moreover, we propose a Floquet driving method to realize equivalent time reverse in the atomic system, which leads to high performance in precision, robustness, and operability. Our study sets a benchmark for achieving high precision and high robustness in atomic nonlinear interferometry.
|
Received: 21 April 2024
Revised: 20 May 2024
Accepted manuscript online:
|
PACS:
|
06.20.-f
|
(Metrology)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2023YFA1407600) and the National Natural Science Foundation of China (Grant Nos. 12275145, 92050110, 91736106, 11674390, and 91836302). |
Corresponding Authors:
Yong-Chun Liu
E-mail: ycliu@tsinghua.edu.cn
|
Cite this article:
Zhiyao Hu(胡知遥), Qixian Li(李其贤), Xuanchen Zhang(张轩晨), He-Bin Zhang(张贺宾), Long-Gang Huang(黄龙刚), and Yong-Chun Liu(刘永椿) Nonlinear time-reversal interferometry with arbitrary quadratic collective-spin interaction 2024 Chin. Phys. B 33 080601
|
[1] Wineland D J, Bollinger J J, Itano W M and Heinzen D 1994 Phys. Rev. A 50 67 [2] Itano W M, Bergquist J C, Bollinger J J, Gilligan J, Heinzen D, Moore F, Raizen M and Wineland D J 1993 Phys. Rev. A 47 3554 [3] Santarelli G, Laurent P, Lemonde P, Clairon A, Mann A G, Chang S, Luiten A N and Salomon C 1999 Phys. Rev. Lett. 82 4619 [4] Louchet-Chauvet A, Appel J, Renema J J, Oblak D, Kjaergaard N and Polzik E S 2010 New J. Phys. 12 065032 [5] Liu Y C, Huang K, Xiao Y F, Yang L and Qiu C W 2021 Nat. Sci. Rev. 8 nwaa210 [6] Sørensen A, Duan L M, Cirac J I and Zoller P 2001 Nature 409 63 [7] Amico L, Fazio R, Osterloh A and Vedral V 2008 Rev. Mod. Phys. 80 517 [8] Orús R, Dusuel S and Vidal J 2008 Phys. Rev. Lett. 101 025701 [9] Islam R, Ma R, Preiss P M, Eric Tai M, Lukin A, Rispoli M and Greiner M 2015 Nature 528 77 [10] Reiter F, Reeb D and Sørensen A S 2016 Phys. Rev. Lett. 117 040501 [11] Abanin D A, Altman E, Bloch I and Serbyn M 2019 Rev. Mod. Phys. 91 021001 [12] Pedrozo-Peñafiel E, Colombo S, Shu C, Adiyatullin A F, Li Z, Mendez E, Braverman B, Kawasaki A, Akamatsu D, Xiao Y, et al. 2020 Nature 588 414 [13] Luo X Y, Zou Y Q, Wu L N, Liu Q, Han M F, Tey M K and You L 2017 Science 355 620 [14] Sørensen A S and Mølmer K 2001 Phys. Rev. Lett. 86 4431 [15] Jin G R, Liu Y C and Liu W M 2009 New J. Phys. 11 073049 [16] Liu Y, Jin G and You L 2010 Phys. Rev. A 82 045601 [17] Kitagawa M and Ueda M 1993 Phys. Rev. A 47 5138 [18] Degen C L, Reinhard F and Cappellaro P 2017 Rev. Mod. Phys. 89 035002 [19] Zou Y Q, Wu L N, Liu Q, Luo X Y, Guo S F, Cao J H, Tey M K and You L 2018 Proc. Nat. Acad. Sci. USA 115 6381 [20] Yang F, Liu Y C and You L 2020 Phys. Rev. Lett. 125 143601 [21] Gärttner M, Bohnet J G, Safavi-Naini A, Wall M L, Bollinger J J and Rey A M 2017 Nat. Phys. 13 781 [22] Braun D, Adesso G, Benatti F, Floreanini R, Marzolino U, Mitchell M W and Pirandola S 2018 Rev. Mod. Phys. 90 035006 [23] Strobel H, Muessel W, Linnemann D, Zibold T, Hume D B, Pezzè L, Smerzi A and Oberthaler M K 2014 Science 345 424 [24] Borish V, Marković O, Hines J A, Rajagopal S V and Schleier-Smith M 2020 Phys. Rev. Lett. 124 063601 [25] Li Z, Braverman B, Colombo S, Shu C, Kawasaki A, Adiyatullin A F, Pedrozo-Peñafiel E, Mendez E and Vuletić V 2022 PRX Quantum 3 020308 [26] Corgier R, Gaaloul N, Smerzi A and Pezzè L 2021 Phys. Rev. Lett. 127 183401 [27] Gietka K and Ritsch H 2023 Phys. Rev. Lett. 130 090802 [28] Huang L G, Zhang X, Wang Y, Hua Z, Tang Y and Liu Y C 2023 Phys. Rev. A 107 042613 [29] Gessner M, Smerzi A and Pezzè L 2019 Phys. Rev. Lett. 122 090503 [30] Muñoz-Arias M H, Deutsch I H and Poggi P M 2023 PRX Quantum 4 020314 [31] Chen F, Chen J J, Wu L N, Liu Y C and You L 2019 Phys. Rev. A 100 041801 [32] Niu C and Yu S 2023 Chin. Phys. Lett. 40 110301 [33] Hong H Y, Lu X J and Kuang S 2023 Chin. Phys. B 32 040603 [34] Davis E, Bentsen G and Schleier-Smith M 2016 Phys. Rev. Lett. 116 053601 [35] Yurke B, McCall S L and Klauder J R 1986 Phys. Rev. A 33 4033 [36] Plick W N, Dowling J P and Agarwal G S 2010 New J. Phys. 12 083014 [37] Ou Z 2012 Phys. Rev. A 85 023815 [38] Gabbrielli M, Pezzè L and Smerzi A 2015 Phys. Rev. Lett. 115 163002 [39] Fröwis F, Sekatski P and Dür W 2016 Phys. Rev. Lett. 116 090801 [40] Linnemann D, Strobel H, Muessel W, Schulz J, Lewis-Swan R J, Kheruntsyan K V and Oberthaler M K 2016 Phys. Rev. Lett. 117 013001 [41] Szigeti S S, Lewis-Swan R J and Haine S A 2017 Phys. Rev. Lett. 118 150401 [42] Ou Z and Li X 2020 APL Photonics 5 080902 [43] Liu Q, Wu L N, Cao J H, Mao T W, Li X W, Guo S F, Tey M K and You L 2022 Nat. Phys. 18 167 [44] Colombo S, Pedrozo-Peñafiel E, Adiyatullin A F, Li Z, Mendez E, Shu C and Vuletić V 2022 Nat. Phys. 18 925 [45] Macrí T, Smerzi A and Pezzè L 2016 Phys. Rev. A 94 010102 [46] Nolan S P, Szigeti S S and Haine S A 2017 Phys. Rev. Lett. 119 193601 [47] Haine S A 2018 Phys. Rev. A 98 030303 [48] Anders F, Pezzè L, Smerzi A and Klempt C 2018 Phys. Rev. A 97 043813 [49] Schulte M, Martínez-Lahuerta V J, Scharnagl M S and Hammerer K 2020 Quantum 4 268 [50] Li Z, Colombo S, Shu C, Velez G, Pilatowsky-Cameo S, Schmied R, Choi S, Lukin M, Pedrozo-Peñafiel E and Vuletić V 2023 Science 380 1381 [51] Liu Q, Mao T W, Xue M, Wu L N and You L 2023 Phys. Rev. A 107 052613 [52] Mirkhalaf S S, Nolan S P and Haine S A 2018 Phys. Rev. A 97 053618 [53] Huang J, Zhuang M, Lu B, Ke Y and Lee C 2018 Phys. Rev. A 98 012129 [54] Lipkin H J, Meshkov N and Glick A 1965 Nuclear Phys. 62 188 [55] Bohnet J G, Sawyer B C, Britton J W, Wall M L, Rey A M, Foss-Feig M and Bollinger J J 2016 Science 352 1297 [56] Hu Z, Li Q, Zhang X, Huang L G, Zhang H b and Liu Y C 2023 Phys. Rev. A 108 023722 [57] The original Hamiltonian for the TAT interaction is $H_{\mathrm{TAT}}=\chi\left(S_{\frac{\pi}{2}, \frac{\pi}{4}}^2-\right.$ $\left.S_{\frac{\pi}{2},-\frac{\pi}{4}}\right)$. By changing the twisting axes, the TAT interaction could also be expressed as $H_{\mathrm{TAT}}=\chi\left(S_x^2-S_z^2\right)$. Since the constant of S2 = $S_x^2+S_y^2+S_z^2$ will not influence the properties of spin squeezing, we simply ignore it, and that makes the TAT interaction as HTAT = $\chi\left(S_x^2-\right.$ $\left.S_z^2+S^2\right) \propto S_x^2+0.5 S_y^2$. [58] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439 [59] Fisher R A 1925 Mathematical Proceedings of the Cambridge Philosophical Society 22 700 [60] Braunstein S L, Caves C M and Milburn G J 1996 Ann. Phys. 247 135 [61] Giovannetti V, Lloyd S and Maccone L 2006 Phys. Rev. Lett. 96 010401 [62] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photonics 5 222 [63] Giovannetti V, Lloyd S and Maccone L 2004 Science 306 1330 [64] Liu Y, Xu Z, Jin G and You L 2011 Phys. Rev. Lett. 107 013601 [65] Zhang X, Hu Z and Liu Y C 2011 Phys. Rev. Lett. 132 113402 [66] The BCH formula has the expression as $\mathrm{e}^A \mathrm{e}^B=\exp \left(A+B+\frac{1}{2!}[A, B]+\right.$ $\frac{1}{3!}\left(\frac{1}{2!}\left[A,[A, B]+\frac{1}{2!}[[A, B], B)+\cdots\right)\right.$. [67] Biercuk M, Doherty A and Uys H 2011 J. Phys. B: Atom. Mol. Opt. Phys. 44 154002 [68] Souza A M, Álvarez G A and Suter D 2012 Phil. Trans. Roy. Soc. A: Math. Phys. Eng. Sci. 370 4748 [69] Ma W L and Liu R B 2016 Phys. Rev. Appl. 6 054012 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|