Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 080601    DOI: 10.1088/1674-1056/ad4ff7
Special Issue: SPECIAL TOPIC — Quantum computing and quantum sensing
SPECIAL TOPIC — Quantum computing and quantum sensing Prev   Next  

Nonlinear time-reversal interferometry with arbitrary quadratic collective-spin interaction

Zhiyao Hu(胡知遥)1,2,†, Qixian Li(李其贤)1,†, Xuanchen Zhang(张轩晨)1,†, He-Bin Zhang(张贺宾)1, Long-Gang Huang(黄龙刚)1,3, and Yong-Chun Liu(刘永椿)1,4,‡
1 State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China;
2 School of Physics, Xi'an Jiaotong University, Xi'an 710049, China;
3 China Fire and Rescue Institute, Beijing 102202, China;
4 Frontier Science Center for Quantum Information, Beijing 100084, China
Abstract  Atomic nonlinear interferometry has wide applications in quantum metrology and quantum information science. Here we propose a nonlinear time-reversal interferometry scheme with high robustness and metrological gain based on the spin squeezing generated by arbitrary quadratic collective-spin interaction, which could be described by the Lipkin-Meshkov-Glick (LMG) model. We optimize the squeezing process, encoding process, and anti-squeezing process, finding that the two particular cases of the LMG model, one-axis twisting and two-axis twisting outperform in robustness and precision, respectively. Moreover, we propose a Floquet driving method to realize equivalent time reverse in the atomic system, which leads to high performance in precision, robustness, and operability. Our study sets a benchmark for achieving high precision and high robustness in atomic nonlinear interferometry.
Keywords:  time-reversal interferometry      spin squeezing      quantum metrology  
Received:  21 April 2024      Revised:  20 May 2024      Accepted manuscript online: 
PACS:  06.20.-f (Metrology)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2023YFA1407600) and the National Natural Science Foundation of China (Grant Nos. 12275145, 92050110, 91736106, 11674390, and 91836302).
Corresponding Authors:  Yong-Chun Liu     E-mail:  ycliu@tsinghua.edu.cn

Cite this article: 

Zhiyao Hu(胡知遥), Qixian Li(李其贤), Xuanchen Zhang(张轩晨), He-Bin Zhang(张贺宾), Long-Gang Huang(黄龙刚), and Yong-Chun Liu(刘永椿) Nonlinear time-reversal interferometry with arbitrary quadratic collective-spin interaction 2024 Chin. Phys. B 33 080601

[1] Wineland D J, Bollinger J J, Itano W M and Heinzen D 1994 Phys. Rev. A 50 67
[2] Itano W M, Bergquist J C, Bollinger J J, Gilligan J, Heinzen D, Moore F, Raizen M and Wineland D J 1993 Phys. Rev. A 47 3554
[3] Santarelli G, Laurent P, Lemonde P, Clairon A, Mann A G, Chang S, Luiten A N and Salomon C 1999 Phys. Rev. Lett. 82 4619
[4] Louchet-Chauvet A, Appel J, Renema J J, Oblak D, Kjaergaard N and Polzik E S 2010 New J. Phys. 12 065032
[5] Liu Y C, Huang K, Xiao Y F, Yang L and Qiu C W 2021 Nat. Sci. Rev. 8 nwaa210
[6] Sørensen A, Duan L M, Cirac J I and Zoller P 2001 Nature 409 63
[7] Amico L, Fazio R, Osterloh A and Vedral V 2008 Rev. Mod. Phys. 80 517
[8] Orús R, Dusuel S and Vidal J 2008 Phys. Rev. Lett. 101 025701
[9] Islam R, Ma R, Preiss P M, Eric Tai M, Lukin A, Rispoli M and Greiner M 2015 Nature 528 77
[10] Reiter F, Reeb D and Sørensen A S 2016 Phys. Rev. Lett. 117 040501
[11] Abanin D A, Altman E, Bloch I and Serbyn M 2019 Rev. Mod. Phys. 91 021001
[12] Pedrozo-Peñafiel E, Colombo S, Shu C, Adiyatullin A F, Li Z, Mendez E, Braverman B, Kawasaki A, Akamatsu D, Xiao Y, et al. 2020 Nature 588 414
[13] Luo X Y, Zou Y Q, Wu L N, Liu Q, Han M F, Tey M K and You L 2017 Science 355 620
[14] Sørensen A S and Mølmer K 2001 Phys. Rev. Lett. 86 4431
[15] Jin G R, Liu Y C and Liu W M 2009 New J. Phys. 11 073049
[16] Liu Y, Jin G and You L 2010 Phys. Rev. A 82 045601
[17] Kitagawa M and Ueda M 1993 Phys. Rev. A 47 5138
[18] Degen C L, Reinhard F and Cappellaro P 2017 Rev. Mod. Phys. 89 035002
[19] Zou Y Q, Wu L N, Liu Q, Luo X Y, Guo S F, Cao J H, Tey M K and You L 2018 Proc. Nat. Acad. Sci. USA 115 6381
[20] Yang F, Liu Y C and You L 2020 Phys. Rev. Lett. 125 143601
[21] Gärttner M, Bohnet J G, Safavi-Naini A, Wall M L, Bollinger J J and Rey A M 2017 Nat. Phys. 13 781
[22] Braun D, Adesso G, Benatti F, Floreanini R, Marzolino U, Mitchell M W and Pirandola S 2018 Rev. Mod. Phys. 90 035006
[23] Strobel H, Muessel W, Linnemann D, Zibold T, Hume D B, Pezzè L, Smerzi A and Oberthaler M K 2014 Science 345 424
[24] Borish V, Marković O, Hines J A, Rajagopal S V and Schleier-Smith M 2020 Phys. Rev. Lett. 124 063601
[25] Li Z, Braverman B, Colombo S, Shu C, Kawasaki A, Adiyatullin A F, Pedrozo-Peñafiel E, Mendez E and Vuletić V 2022 PRX Quantum 3 020308
[26] Corgier R, Gaaloul N, Smerzi A and Pezzè L 2021 Phys. Rev. Lett. 127 183401
[27] Gietka K and Ritsch H 2023 Phys. Rev. Lett. 130 090802
[28] Huang L G, Zhang X, Wang Y, Hua Z, Tang Y and Liu Y C 2023 Phys. Rev. A 107 042613
[29] Gessner M, Smerzi A and Pezzè L 2019 Phys. Rev. Lett. 122 090503
[30] Muñoz-Arias M H, Deutsch I H and Poggi P M 2023 PRX Quantum 4 020314
[31] Chen F, Chen J J, Wu L N, Liu Y C and You L 2019 Phys. Rev. A 100 041801
[32] Niu C and Yu S 2023 Chin. Phys. Lett. 40 110301
[33] Hong H Y, Lu X J and Kuang S 2023 Chin. Phys. B 32 040603
[34] Davis E, Bentsen G and Schleier-Smith M 2016 Phys. Rev. Lett. 116 053601
[35] Yurke B, McCall S L and Klauder J R 1986 Phys. Rev. A 33 4033
[36] Plick W N, Dowling J P and Agarwal G S 2010 New J. Phys. 12 083014
[37] Ou Z 2012 Phys. Rev. A 85 023815
[38] Gabbrielli M, Pezzè L and Smerzi A 2015 Phys. Rev. Lett. 115 163002
[39] Fröwis F, Sekatski P and Dür W 2016 Phys. Rev. Lett. 116 090801
[40] Linnemann D, Strobel H, Muessel W, Schulz J, Lewis-Swan R J, Kheruntsyan K V and Oberthaler M K 2016 Phys. Rev. Lett. 117 013001
[41] Szigeti S S, Lewis-Swan R J and Haine S A 2017 Phys. Rev. Lett. 118 150401
[42] Ou Z and Li X 2020 APL Photonics 5 080902
[43] Liu Q, Wu L N, Cao J H, Mao T W, Li X W, Guo S F, Tey M K and You L 2022 Nat. Phys. 18 167
[44] Colombo S, Pedrozo-Peñafiel E, Adiyatullin A F, Li Z, Mendez E, Shu C and Vuletić V 2022 Nat. Phys. 18 925
[45] Macrí T, Smerzi A and Pezzè L 2016 Phys. Rev. A 94 010102
[46] Nolan S P, Szigeti S S and Haine S A 2017 Phys. Rev. Lett. 119 193601
[47] Haine S A 2018 Phys. Rev. A 98 030303
[48] Anders F, Pezzè L, Smerzi A and Klempt C 2018 Phys. Rev. A 97 043813
[49] Schulte M, Martínez-Lahuerta V J, Scharnagl M S and Hammerer K 2020 Quantum 4 268
[50] Li Z, Colombo S, Shu C, Velez G, Pilatowsky-Cameo S, Schmied R, Choi S, Lukin M, Pedrozo-Peñafiel E and Vuletić V 2023 Science 380 1381
[51] Liu Q, Mao T W, Xue M, Wu L N and You L 2023 Phys. Rev. A 107 052613
[52] Mirkhalaf S S, Nolan S P and Haine S A 2018 Phys. Rev. A 97 053618
[53] Huang J, Zhuang M, Lu B, Ke Y and Lee C 2018 Phys. Rev. A 98 012129
[54] Lipkin H J, Meshkov N and Glick A 1965 Nuclear Phys. 62 188
[55] Bohnet J G, Sawyer B C, Britton J W, Wall M L, Rey A M, Foss-Feig M and Bollinger J J 2016 Science 352 1297
[56] Hu Z, Li Q, Zhang X, Huang L G, Zhang H b and Liu Y C 2023 Phys. Rev. A 108 023722
[57] The original Hamiltonian for the TAT interaction is $H_{\mathrm{TAT}}=\chi\left(S_{\frac{\pi}{2}, \frac{\pi}{4}}^2-\right.$ $\left.S_{\frac{\pi}{2},-\frac{\pi}{4}}\right)$. By changing the twisting axes, the TAT interaction could also be expressed as $H_{\mathrm{TAT}}=\chi\left(S_x^2-S_z^2\right)$. Since the constant of S2 = $S_x^2+S_y^2+S_z^2$ will not influence the properties of spin squeezing, we simply ignore it, and that makes the TAT interaction as HTAT = $\chi\left(S_x^2-\right.$ $\left.S_z^2+S^2\right) \propto S_x^2+0.5 S_y^2$.
[58] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439
[59] Fisher R A 1925 Mathematical Proceedings of the Cambridge Philosophical Society 22 700
[60] Braunstein S L, Caves C M and Milburn G J 1996 Ann. Phys. 247 135
[61] Giovannetti V, Lloyd S and Maccone L 2006 Phys. Rev. Lett. 96 010401
[62] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photonics 5 222
[63] Giovannetti V, Lloyd S and Maccone L 2004 Science 306 1330
[64] Liu Y, Xu Z, Jin G and You L 2011 Phys. Rev. Lett. 107 013601
[65] Zhang X, Hu Z and Liu Y C 2011 Phys. Rev. Lett. 132 113402
[66] The BCH formula has the expression as $\mathrm{e}^A \mathrm{e}^B=\exp \left(A+B+\frac{1}{2!}[A, B]+\right.$ $\frac{1}{3!}\left(\frac{1}{2!}\left[A,[A, B]+\frac{1}{2!}[[A, B], B)+\cdots\right)\right.$.
[67] Biercuk M, Doherty A and Uys H 2011 J. Phys. B: Atom. Mol. Opt. Phys. 44 154002
[68] Souza A M, Álvarez G A and Suter D 2012 Phil. Trans. Roy. Soc. A: Math. Phys. Eng. Sci. 370 4748
[69] Ma W L and Liu R B 2016 Phys. Rev. Appl. 6 054012
[1] Micron-sized fiber diamond probe for quantum precision measurement of microwave magnetic field
Wen-Tao Lu(卢文韬), Sheng-Kai Xia(夏圣开), Ai-Qing Chen(陈爱庆), Kang-Hao He(何康浩), Zeng-Bo Xu(许增博), Yi-Han Chen(陈艺涵), Yang Wang(汪洋), Shi-Yu Ge(葛仕宇), Si-Han An(安思瀚), Jian-Fei Wu(吴建飞), Yi-Han Ma(马艺菡), and Guan-Xiang Du(杜关祥). Chin. Phys. B, 2024, 33(8): 080305.
[2] Enhancing quantum metrology for multiple frequencies of oscillating magnetic fields by quantum control
Xin Lei(雷昕), Jingyi Fan(范静怡), and Shengshi Pang(庞盛世). Chin. Phys. B, 2024, 33(6): 060304.
[3] Holevo bound independent of weight matrices for estimating two parameters of a qubit
Chang Niu(牛畅) and Sixia Yu(郁司夏). Chin. Phys. B, 2024, 33(2): 020304.
[4] Beating standard quantum limit via two-axis magnetic susceptibility measurement
Zheng-An Wang(王正安), Yi Peng(彭益), Dapeng Yu(俞大鹏), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(4): 040309.
[5] Quantum metrology with coherent superposition of two different coded channels
Dong Xie(谢东), Chunling Xu(徐春玲), and Anmin Wang(王安民). Chin. Phys. B, 2021, 30(9): 090304.
[6] Super-sensitivity measurement of tiny Doppler frequency shifts based on parametric amplification and squeezed vacuum state
Zhi-Yuan Wang(王志远), Zi-Jing Zhang(张子静), and Yuan Zhao(赵远). Chin. Phys. B, 2021, 30(7): 074202.
[7] Multilevel atomic Ramsey interferometry for precise parameter estimations
X N Feng(冯夏宁) and L F Wei(韦联福). Chin. Phys. B, 2021, 30(12): 120601.
[8] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[9] Generation of atomic spin squeezing via quantum coherence: Heisenberg-Langevin approach
Xuping Shao(邵旭萍). Chin. Phys. B, 2020, 29(12): 124206.
[10] Quantum optical interferometry via general photon-subtracted two-mode squeezed states
Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅). Chin. Phys. B, 2019, 28(9): 094217.
[11] Spin squeezing in Dicke-class of states with non-orthogonal spinors
K S Akhilesh, K S Mallesh, Sudha, Praveen G Hegde. Chin. Phys. B, 2019, 28(6): 060302.
[12] Quantum interferometry via a coherent state mixed with a squeezed number state
Li-Li Hou(侯丽丽), Yong-Xing Sui(眭永兴), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2019, 28(4): 044203.
[13] Quantum metrology with a non-Markovian qubit system
Jiang Huang(黄江), Wen-Qing Shi(师文庆), Yu-Ping Xie(谢玉萍), Guo-Bao Xu(徐国保), Hui-Xian Wu(巫慧娴). Chin. Phys. B, 2018, 27(12): 120301.
[14] Super-sensitive phase estimation with coherent boosted light using parity measurements
Lan Xu(许兰), Qing-Shou Tan(谭庆收). Chin. Phys. B, 2018, 27(1): 014203.
[15] Super-resolution and super-sensitivity of entangled squeezed vacuum state using optimal detection strategy
Jiandong Zhang(张建东), Zijing Zhang(张子静), Longzhu Cen(岑龙柱), Shuo Li(李硕), Yuan Zhao(赵远), Feng Wang(王峰). Chin. Phys. B, 2017, 26(9): 094204.
No Suggested Reading articles found!