Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 080201    DOI: 10.1088/1674-1056/adbed7
Special Issue:
SPECIAL TOPIC — A celebration of the 90th Anniversary of the Birth of Bolin Hao   Next  

Duality symmetry, two entropy functions, and an eigenvalue problem in generalized Gibbs' theory

Jeffrey Commons1, Ying-Jen Yang(杨颖任)2,3, and Hong Qian(钱纮)2,†
1 Department of Physics, University of Washington, Seattle, WA 98195-1560, USA;
2 Department of Applied Mathematics, University of Washington, Seattle, WA 98195-3925, USA;
3 Laufer Center for Physical and Quantitative Biology, Stony Brook University, New York 11794, USA
Abstract  We generalize the convex duality symmetry in Gibbs' statistical ensemble formulation, between the Gibbs entropy $\varphi_{V,N}(E)$ as a function of mean internal energy $E$ and Massieu's free entropy $\varPsi_{V,N}(\beta)$ as a function of inverse temperature $\beta$. The duality in terms of Legendre-Fenchel transform tells us that Gibbs' thermodynamic entropy is to the law of large numbers (LLN) for arithmetic sample mean values what Shannon's information entropy is to the LLN for empirical counting frequencies in independent and identically distributed data. Proceeding with the same mathematical logic, we identify the energy of the state $\{u_i\}$ as the conjugate variable to the counting of statistical occurrence $\{m_i\}$ and find a Hamilton-Jacobi equation for the Shannon entropy analogous to an equation of state in thermodynamics. An eigenvalue problem that is reminiscent of certain features in quantum mechanics arises in the entropy theory of statistical counting frequencies of Markov correlated data.
Keywords:  counting statistics      equation of state      entropy      large deviations      law of large numbers  
Received:  30 June 2024      Revised:  02 March 2025      Accepted manuscript online:  11 March 2025
PACS:  02.50.Cw (Probability theory)  
  05.70.-a (Thermodynamics)  
  82.60.-s (Chemical thermodynamics)  
  89.70.-a (Information and communication theory)  
Corresponding Authors:  Hong Qian     E-mail:  hqian@uw.edu

Cite this article: 

Jeffrey Commons, Ying-Jen Yang(杨颖任), and Hong Qian(钱纮) Duality symmetry, two entropy functions, and an eigenvalue problem in generalized Gibbs' theory 2025 Chin. Phys. B 34 080201

[1] Smith E 2020 Entropy 22 1137
[2] Qian H 2022 J. Chem. Theory Comput. 18 6421
[3] Qian H 2024 Entropy 26 1091
[4] Ge H and Qian H 2016 Phys. Rev. E 94 052150
[5] Ge H and Qian H 2017 J. Stat. Phys. 166 190
[6] Hill T L 1963 Thermodynamics of Small Systems (New York: Dover)
[7] Lu Z and Qian H 2022 Phys. Rev. Lett. 128 150603
[8] Oono Y 1989 Progr. Theor. Phys. Supp. 99 165
[9] Dembo A and Zeitouni O 1998 Large Deviations Techniques and Applications, 2nd Ed. (New York: Springer)
[10] Chibbaro S, Rondoni L and Vulpiani A 2014 Reductionism, Emergence and Levels of Reality (New York: Springer)
[11] Angelini E and Qian H 2023 J. Phys. Chem. B 127 2552
[12] Rockafellar R T 1996 Convex Analysis (NJ: Princeton Univ. Press)
[13] Miao B, Qian H and Wu Y S 2024 arXiv:2406.02405
[14] Shannon C E and Weaver W 1949 The Mathematical Theory of Communication (Champaign: Univ. Ill. Press)
[15] Hobson A 1969 J. Stat. Phys. 1 383
[16] Shore J E and Johnson R W 1980 IEEE Trans. Inf. Th. 26 26
[17] Guggenheim E A 1933 Modern Thermodynamics by the Methods of Willard Gibbs (New York: Methuen & Co.)
[18] Callen H B 1991 Thermodynamics and an Introduction to Thermostatistics, 2nd Ed. (New York: John Wiley & Sons)
[19] Huang K 1963 Statistical Mechanics (New York: John Wiley & Sons)
[20] Kirkwood J G 1935 J. Chem. Phys. 3 300
[21] Yang Y J and Qian H 2020 Phys. Rev. E 101 022129
[22] Barato A C and Chetrite R 2015 J. Stat. Phys. 160 1154
[23] Baldi P and Piccioni M 1999 Stat. Probab. Lett. 41 107
[24] Cohen J 1981 Proc. Amer. Math. Soc. 81 657
[25] Yang C N and Lee T D 1952 Phys. Rev. 87 404
[26] Anderson P W 1972 Science 177 393
[27] Jaynes E T 2003 Probability Theory: The Logic of Science (Cambridge: Cambridge Univ. Press)
[28] Ghosh K, Dixit P D, Agozzino L and Dill K A 2020 Annu. Rev. Phys. Chem. 71 213
[29] Dill K A 2021 The maximum caliber principle for modeling stochastic dynamic processes
[30] Salmon W C 1990 Four Decades of Scientific Explanation (Pittsburgh: Univ. Pittsburgh Press)
[31] Laughlin R B 2006 A Different Universe: Reinventing Physics from the Bottom Down (New York: Basic Books)
[32] Schellman J A 1997 Biophys. Chem. 64 7
[33] Hoffmann B 2011 The Strange Story of the Quantum (New York: Dover)
[1] Pressure in active matter
Guo Yu(余果), Ruiyao Li(李蕤耀), Fukang Li(李富康), Jiayu Zhang(张佳玉), Xiyue Li(李西月), Zequ Chen(陈泽渠), Joscha Mecke, and Yongxiang Gao(高永祥). Chin. Phys. B, 2025, 34(9): 094702.
[2] CVTree for 16S rRNA: Constructing taxonomy-compatible all-species living tree effectively and efficiently
Yi-Fei Lu(卢逸飞), Xiao-Yang Zhi(职晓阳), and Guang-Hong Zuo(左光宏). Chin. Phys. B, 2025, 34(8): 088704.
[3] A novel baseline perspective visibility graph for time series analysis
Huang-Jing Ni(倪黄晶), Zi-Jie Song(宋紫婕), Jiao-Long Qin(秦姣龙), Ye Wu(吴烨), Shi-Le Qi(戚世乐), and Ming Song(宋明). Chin. Phys. B, 2025, 34(8): 080504.
[4] High-entropy alloys in synergistic electrocatalytic conversion applications
Hui Zhang(张辉), Zhengxiong Liu(刘争雄), Le Fang(方乐), Yin Wang(王音), Shuai Chen(陈帅), and Wei Ren(任伟). Chin. Phys. B, 2025, 34(8): 086109.
[5] A thermodynamically complete multi-phase equation of state for dense and porous metals at wide ranges of temperature and pressure
Yanhong Zhao(赵艳红), Li-Fang Wang(王丽芳), Qili Zhang(张其黎), Le Zhang(张乐), Hongzhou Song(宋红州), Xingyu Gao(高兴誉), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2025, 34(3): 036401.
[6] Impact of the chaotic semiconductor laser output power on time-delay-signature of chaos and random bit generation
Chenpeng Xue(薛琛鹏), Xu Wang(王绪), Likai Zheng(郑利凯), Haoyu Zhang(张昊宇), Yanhua Hong, and Zuxing Zhang(张祖兴). Chin. Phys. B, 2025, 34(3): 030504.
[7] Self-similarity of multilayer networks
Bing Wang(王冰), Huizhi Yu(于蕙芷), and Daijun Wei(魏代俊). Chin. Phys. B, 2025, 34(1): 010202.
[8] Entropy variances of pure coherent states in the diffusion channel
Wei-Feng Wu(吴卫锋), Yong Fang(方勇), and Peng Fu(付鹏). Chin. Phys. B, 2024, 33(9): 094202.
[9] Control of interfacial reaction and defect formation in Gd/Bi2Te2.7Se0.3 composites with excellent thermoelectric and magnetocaloric properties
Tianchang Xue(薛天畅), Ping Wei(魏平), Chengshan Liu(刘承姗), Longzhou Li(李龙舟), Wanting Zhu(朱婉婷), Xiaolei Nie(聂晓蕾), and Wenyu Zhao(赵文俞). Chin. Phys. B, 2024, 33(8): 087403.
[10] Evolution of helium bubbles in FeCoNiCr-based high-entropy alloys containing $ \gamma '$ nanoprecipitates
Ting Feng(冯婷), Sheng-Ming Jiang(蒋胜明), Xiao-Tian Hu(胡潇天), Zi-Jun Zhang(张子骏), Zi-Jing Huang(黄子敬), Shi-Gang Dong(董士刚), and Jian Zhang(张建). Chin. Phys. B, 2024, 33(7): 076501.
[11] Entropy of deterministic trajectory via trajectories ensemble
Yonggang Peng(彭勇刚), Cuiping Ran(冉翠平), and Yujun Zheng(郑雨军). Chin. Phys. B, 2024, 33(6): 063401.
[12] Magnetic and magnetocaloric effect of Er20Ho20Dy20Cu20Ni20 high-entropy metallic glass
Shi-Lin Yu(于世霖), Lu Tian(田路), Jun-Feng Wang(王俊峰), Xin-Guo Zhao(赵新国), Da Li(李达), Zhao-Jun Mo(莫兆军), and Bing Li(李昺). Chin. Phys. B, 2024, 33(5): 057502.
[13] High-entropy alloys in thermoelectric application: A selective review
Kai Ren(任凯), Wenyi Huo(霍文燚), Shuai Chen(陈帅), Yuan Cheng(程渊), Biao Wang(王彪), and Gang Zhang(张刚). Chin. Phys. B, 2024, 33(5): 057202.
[14] Quintessence anisotropic stellar models in quadratic and Born-Infeld modified teleparallel Rastall gravity
Allah Ditta, Tiecheng Xia(夏铁成), Irfan Mahmood, and Asif Mahmood. Chin. Phys. B, 2024, 33(3): 030204.
[15] Pedestrian lane formation with following-overtaking model and measurement of system order
Bi-Lu Li(李碧璐), Zheng Li(李政), Rui Zhou(周睿), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2024, 33(2): 020505.
No Suggested Reading articles found!