Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 087307    DOI: 10.1088/1674-1056/add5ce
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Quantum oscillations in TaCo2Te2 thin flakes

Ruiyang Jiang(蒋睿阳)1,2, Tian Le(乐天)3,†, Yunteng Shi(石云腾)1,2, Changcun Li(李长存)4, Xinyi Zheng(郑新义)1,2, Xingchen Guo(郭兴宸)1,2, Bingbing Tong(仝冰冰)1,5, Peiling Li(李沛岭)1,5, Ziwei Dou(窦子威)1, Xiaohui Song(宋小会)1,5, Jie Shen(沈洁)1, Zhaozheng Lyu(吕昭征)1,5, Guangtong Liu(刘广同)1,5, Fucai Liu(刘富才)4,6,‡, Li Lu(吕力)1,2,5,§, and Fanming Qu(屈凡明)1,2,5,¶
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Center for Quantum Matter, Institute for Advanced Study in Physics, Zhejiang University, Hangzhou 310027, China;
4 School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China;
5 Hefei National Laboratory, Hefei 230088, China;
6 Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313098, China
Abstract  The ternary transition-metal telluride TaCo$_{2}$Te$_{2}$ has been reported to host a topological band structure characterized by a nontrivial Berry phase. While transport properties have been investigated in both bulk crystals and thick flakes ($>$150 nm), studies on thin flakes ($< 100 $ nm) of this van der Waals (vdW) material remain scarce. We investigate the low-temperature transport properties of TaCo$_{2}$Te$_{2}$ thin flakes by fabricating Hall bar devices on mechanically exfoliated flakes with different thicknesses (15 nm and 90 nm). Temperature-dependent resistance measurements reveal that the 15-nm-thick sample exhibits a lower residual resistivity ratio and Debye temperature compared to the 90-nm-thick one. Magnetotransport measurements under perpendicular magnetic fields up to $\pm 14$ T demonstrate lower magnetoresistance, carrier concentration, and mobility in the thinner sample, suggesting increased phonon scattering due to defect-induced disorder. Remarkably, pronounced Shubnikov-de Haas (SdH) oscillations are observed above 8 T in both samples in spite of the defect-induced disorder. Analysis of the Landau fan diagram yields a non-zero Berry phase in both samples, indicating the existence of a topologically non-trivial phase in TaCo$_{2}$Te$_{2}$ thin flakes. Our findings establish TaCo$_{2}$Te$_{2}$ as a promising candidate for exploring intrinsic topological states in layered materials.
Keywords:  quantum oscillations      TaCo$_{2}$Te$_{2}$      thin flakes  
Received:  26 March 2025      Revised:  29 April 2025      Accepted manuscript online:  08 May 2025
PACS:  73.61.-r (Electrical properties of specific thin films)  
  73.43.Qt (Magnetoresistance)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  05.60.Gg (Quantum transport)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2022YFA1403400 and 2020YFA0309200), the National Natural Science Foundation of China (Grant Nos. 12074417, 92065203, 92365207, and 92477115), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33000000), the Synergetic Extreme Condition User Facility sponsored by the National Development and Reform Commission, and the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302600).
Corresponding Authors:  Tian Le, Fucai Liu, Li Lu, Fanming Qu     E-mail:  tianlephy@zju.edu.cn;fucailiu@uestc.edu.cn;lilu@iphy.ac.cn;fanmingqu@iphy.ac.cn

Cite this article: 

Ruiyang Jiang(蒋睿阳), Tian Le(乐天), Yunteng Shi(石云腾), Changcun Li(李长存), Xinyi Zheng(郑新义), Xingchen Guo(郭兴宸), Bingbing Tong(仝冰冰), Peiling Li(李沛岭), Ziwei Dou(窦子威), Xiaohui Song(宋小会), Jie Shen(沈洁), Zhaozheng Lyu(吕昭征), Guangtong Liu(刘广同), Fucai Liu(刘富才), Li Lu(吕力), and Fanming Qu(屈凡明) Quantum oscillations in TaCo2Te2 thin flakes 2025 Chin. Phys. B 34 087307

[1] Wang A, Li Y, Yang G, Yan D, Huang Y, Guo Z, Gao J, Huang J, Zeng Q, Qian D, Wang H, Guo X, Meng F, Zhang Q, Gu L, Zhou X, Liu G, Qu F, Qian T, Shi Y, Wang Z, Lu L and Shen J 2023 Nat. Commun. 14 7647
[2] Jiao W H, Qiu H Q, Yang W, Bao J K, Xiao S, Liu Y, Li Y, Cao G H, Xu X, Ren Z and Zhang P 2023 Phys. Rev. B 108 245145
[3] Koepernik K, Kasinathan D, Efremov D V, Khim S, Borisenko S, Büchner B and Van Den Brink J 2016 Phys. Rev. B 93 201101
[4] Schönemann R, Chiu Y C, Zheng W, Quito V L, Sur S, McCandless G T, Chan J Y and Balicas L 2019 Phys. Rev. B 99 195128
[5] Hao Z, Chen W, Wang Y, Li J, Ma X M, Hao Y J, Lu R, Shen Z, Jiang Z, Liu W, Jiang Q, Yang Y, Lei X, Wang L, Fu Y, Zhou L, Huang L, Liu Z, Ye M, Shen D, Mei J, He H, Liu C, Deng K, Liu C, Liu Q and Chen C 2021 Phys. Rev. B 104 115158
[6] Xiao S, Jiao W H, Lin Y, Jiang Q, Yang X, He Y, Jiang Z, Yang Y, Liu Z, Ye M, Shen D and He S 2022 Phys. Rev. B 105 195145
[7] Lu Q, Ran Z, Li Y, Xu C, Hu J, Yin X, Wang G, Zhang W, Luo W, Xu X and Qian D 2022 Quantum Front. 1 9
[8] Tremelt W 1991 Journal of the Chemical Society, Chemical Communications 19 1405
[9] Tremel W 1992 Angew. Chem. Int. Ed. Engl. 31 217
[10] Singha R, Yuan F, Cheng G, Salters T H, Oey Y M, Villalpando G V, Jovanovic M, Yao N and Schoop L M 2022 Adv. Funct. Mater. 32 2108920
[11] Wang L, Tian J, Kang C, Gu H, Pang R, Shen M, She L, Song Y, Liu X and Zhang W 2022 Inorg. Chem. 61 18899
[12] Pate S, Chen B, Shen B, Li K, Zhou X, Chung D Y, Divan R, Kanatzidis M G,Welp U, KwokWK and Xiao Z L 2024 Phys. Rev. B 109 035129
[13] Rong H, Huang Z, Zhang X, Kumar S, Zhang F, Zhang C,Wang Y, Hao Z, Cai Y,Wang L, Liu C, Ma X, Guo S, Shen B, Liu Y, Cui S, Shimada K, Wu Q, Lin J, Yao Y, Wang Z, Xu H and Chen C 2023 npj Quantum Mater. 8 29
[14] JiaoWH, Liu Y, Tao P, Lu J, Liang X, YangW, Zhang Z, Xu S, Luo Y, Zhu Z W, Qian D, Xu X, Ren Z, Cao G H and Xiao S 2025 Phys. Rev. B 111 045109
[15] Shoenberg D 1984 Magnetic Oscillations in Metals (Cambridge: Cambridge University Press)
[16] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
[17] Mikitik G P and Sharlai Y V 1999 Phys. Rev. Lett. 82 2147
[18] Wang C M, Lu H Z and Shen S Q 2016 Phys. Rev. Lett. 117 077201
[19] Cheng P, Zhang C, Liu Y, Yuan X, Song F, Sun Q, Zhou P, Zhang D W and Xiu F 2016 New J. Phys. 18 083003
[20] Murakawa H, Bahramy M S, Tokunaga M, Kohama Y, Bell C, Kaneko Y, Nagaosa N, Hwang H Y and Tokura Y 2013 Science 342 1490
[21] Wang Q, Guo P J, Sun S, Li C, Liu K, Lu Z Y and Lei H 2018 Phys. Rev. B 97 205105
[22] Ma W, Zhang X and Takahashi K 2010 J. Phys. D: Appl. Phys. 43 465301
[23] Xiang F X, Srinivasan A, Du Z Z, Klochan O, Dou S X, Hamilton A R and Wang X L 2018 Phys. Rev. B 98 035115
[1] Quantum oscillations and nontrivial topology in unfilled skutterudite IrSb3
Yang Yang(杨扬), Xinyao Li(李鑫垚), Feihong Guan(关飞鸿), Majeed Ur Rehman, Wei Ning(宁伟), Xiangde Zhu(朱相德), and Mingliang Tian(田明亮). Chin. Phys. B, 2025, 34(6): 067103.
[2] Two-dimensional Sb net generated nontrivial topological states in SmAgSb2 probed by quantum oscillations
Jian Yuan(袁健), Xian-Biao Shi(石贤彪), Hong Du(杜红), Tian Li(李田), Chuan-Ying Xi(郗传英), Xia Wang(王霞), Wei Xia(夏威), Bao-Tian Wang(王保田), Rui-Dan Zhong(钟瑞丹), and Yan-Feng Guo(郭艳峰). Chin. Phys. B, 2024, 33(7): 077102.
[3] Nonlinear current response and electric quantum oscillations in the Dirac semimetal Cd3As2
Hao-Nan Cui(崔浩楠), Ze-Nan Wu(吴泽南), Jian-Kun Wang(王建坤), Guang-Yu Zhu(祝光宇), Jia-Jie Yang(杨佳洁), Wen-Zhuang Zheng(郑文壮), Zhi-Min Liao(廖志敏), Shuo Wang(王硕), Ben-Chuan Lin(林本川), and Dapeng Yu(俞大鹏). Chin. Phys. B, 2023, 32(8): 087306.
[4] Negative differential resistance and quantum oscillations in FeSb2 with embedded antimony
Fangdong Tang(汤方栋), Qianheng Du(杜乾衡), Cedomir Petrovic, Wei Zhang(张威), Mingquan He(何明全), Liyuan Zhang(张立源). Chin. Phys. B, 2019, 28(3): 037104.
[5] Quantum oscillations and nontrivial transport in (Bi0.92In0.08)2Se3
Minhao Zhang(张敏昊), Yan Li(李焱), Fengqi Song(宋凤麒), Xuefeng Wang(王学锋), Rong Zhang(张荣). Chin. Phys. B, 2017, 26(12): 127305.
[6] Magnetic quantum oscillations in a monolayer graphene under a perpendicular magnetic field
Fu Zhen-Guo(付振国), Wang Zhi-Gang(王志刚), Li Shu-Shen(李树深), and Zhang Ping(张平). Chin. Phys. B, 2011, 20(5): 058103.
No Suggested Reading articles found!