Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 074202    DOI: 10.1088/1674-1056/adcd43
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Phase-modulated dynamical decoupling sequences robust to systematic amplitude error

Sijie Chen(陈思婕)1,2,†, Guanxing Chen(陈官幸)1,†, Jiahao Huang(黄嘉豪)1, Peiliang Liu(刘培亮)1,‡, Min Zhuang(庄敏)2,§, and Chaohong Lee(李朝红)2
1 Laboratory of Quantum Engineering and Quantum Metrology & School of Physics and Astronomy, Sun Yat-Sen University (Zhuhai Campus), Zhuhai 519082, China;
2 Institute of Quantum Precision Measurement, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Abstract  Dynamical decoupling (DD), usually implemented by sophisticated sequences of instantaneous control pulses, is a well-established quantum control technique for quantum information and quantum sensing. In practice, the pulses are inevitably imperfect with many systematic errors that may influence the performances of DD. In particular, Rabi error and detuning are primary systemic errors arising from finite pulse duration, incorrect time control, and frequency instability. Here, we propose a phase-modulated DD with staggered global phases for the basic units of the pulse sequences to suppress these systemic errors. By varying the global phases appended to the pulses in the dynamical decoupling unit alternatively with 0 or $\pi$, our protocol can significantly reduce the influences of Rabi error and detuning. Our protocol is general and can be combined with the most existing DD sequences such as universal DD, knill DD, XY, etc. As an example, we further apply our method to quantum lock-in detection for measuring time-dependent alternating signals. Our study paves the way for a simple and feasible way to realize robust dynamical decoupling sequences, which can be applicable for various quantum sensing scenarios.
Keywords:  dynamical decoupling      quantum sensing      quantum lock-in amplifier  
Received:  17 February 2025      Revised:  14 April 2025      Accepted manuscript online:  16 April 2025
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  03.67.-a (Quantum information)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1404104), the National Natural Science Foundation of China (Grant Nos. 92476201, 12025509, 12305022, and 12475029), the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2019B030330001), and Guangdong Provincial Quantum Science Strategic Initiative Fund (Grant Nos. GDZX2305006 and GDZX2405002).
Corresponding Authors:  Peiliang Liu, Min Zhuang     E-mail:  liupliang@mail.sysu.edu.cn;mmzhuang@szu.edu.cn

Cite this article: 

Sijie Chen(陈思婕), Guanxing Chen(陈官幸), Jiahao Huang(黄嘉豪), Peiliang Liu(刘培亮), Min Zhuang(庄敏), and Chaohong Lee(李朝红) Phase-modulated dynamical decoupling sequences robust to systematic amplitude error 2025 Chin. Phys. B 34 074202

[1] Zhang J, Du P, Jing L and Xu P, You L and Zhang W 2024 Chin. Phys. B 33 030301
[2] Sekiguchi Y, Komura Y and Kosaka H 2019 Phys. Rev. Appl. 12 051001
[3] Liu G, Po H, Du J, Liu R and Pan X 2013 Nat. Commun. 4 2254
[4] Pelzer L, Dietze K, Martlnez-Lahuerta V J, Krinner L, Kramer J, Dawel F, Spethmann N C H, Hammerer K and Schmidt P O 2024 Phys. Rev. Lett. 133 033203
[5] Barthel P, Huber P H, Casanova J, Arrazola I, Niroomand D, Sriarunothai T, Plenio M B and Wunderlich C 2023 New J. Phys. 25 063023
[6] Hahn A, Burgarth D and Yuasa K 2022 New J. Phys. 24 063027
[7] Connors E J, Nelson J, Edge L F and Nichol J M 2022 Nat. Commun. 13 940
[8] Lijuan D, Inigo A, Xi C and Casanova J 2021 Phys. Rev. Appl. 15 034055
[9] Zhang J and Suter D 2015 Phys. Rev. Lett. 115 110502
[10] Bylander J, Gustavsson S, Yan F, Yoshihara F, Harrabi K, Fitch G, Cory D G, Nakamura Y, Tsai J and Oliver W D 2011 Nat. Phys. 7 565
[11] Wang Y, Um M, Zhang J, An S, Lyu M, Zhang J, Duan L M, Yum D and Kim K 2017 Nat. Photon. 11 646
[12] Wang P, Luan C, Qiao M, Um M, Zhang J, Wang Y, Yuan X, Gu M, Zhang J and Kim K 2021 Phys. Rev. Lett. 12 233
[13] Wang Z, Lang J, Schmitt S, Lang J, Casanova J, McGuinness L, Monteiro T S, Jelezko F and Plenio M B 2019 Phys. Rev. Lett. 122 200403
[14] Gong B, Tu T, Zhu X, Guo A, Zhou Z, Guo G and Li C 2020 Sci. Rep. 10 15089
[15] Arrad G, Vinkler Y, Aharonov D and Retzker A 2014 Phys. Rev. Lett. 112 150801
[16] West J R, Lidar D A, Fong B H and Gyure M F 2010 Phys. Rev. Lett. 105 230503
[17] Á lvarez G A and Suter D 2011 Phys. Rev. Lett. 107 230501
[18] Merkel B, Fariña P C and Reiserer A 2021 Phys. Rev. Lett. 127 030501
[19] Genov G T, Schraft D, Vitanov N V and Halfmann T 2017 Phys. Rev. Lett. 118 133202
[20] Bazant P, Frydrych H, Alber G and Jex I 2015 Phys. Rev. A 92 022325
[21] Qiu J, Zhou Y, Hu C, Yuan J, Zhang L, Chu J, Huang W, Liu W and Luo K 2021 Phys. Rev. Appl. 16 054047
[22] Shim J H, Niemeyer I and Zhang J 2012 Europhys. Lett. 99 40004
[23] Lang J E, Madhavan T, Tetienne J P, Broadway D A, Hall L T, Teraji T, Monteiro T S, Stacey A and Hollenberg L C L 2019 Phys. Rev. A 99 012110
[24] Gupta1 M K, Navarro E J, Moulder T A, Mueller J D, Balouchi A, Brown K L, Lee H and Dowling J P 2015 Phys. Rev. A 91 032329
[25] Souza AM, Á lvarez G A and Suter D 2011 Phys. Rev. Lett. 106 240501
[26] Lange G D, Wang Z H, Ristè D, Dobrovitski V V and Hanson R 2010 Science 330 60
[27] Wang Z, Casanova J and Plenio M B 2020 Symmetry 12 730
[28] Kotler S, Akerman N, Glickman Y, Keselman A and Ozeri R 2011 Nature 473 61
[29] Schmitt S, Gefen T, Stürner F M, Unden T,Wolff G,Müller C, Scheuer J, Naydenov B, Markham M, Pezzagna S, Meijer J, Schwarz I, Plenio M, Retzker A, McGuinness L P and Jelezko F 2017 Science 356 837
[30] Boss J M, Cujia K S, Zopes J and Degen C L 2017 Science 356 837
[31] Zhuang M, Huang J and Lee C 2021 PRX Quantum 2 040317
[32] Shibata K, Sekiguchi N and Hirano T 2021 Phys. Rev. A 103 043335
[33] Shaniv R and Ozeri R 2017 Nat. Commun. 8 14157
[34] Boross P, Széchenyi G and Pályi A 2018 Phys. Rev. B 97 245417
[35] Parashar M, Bathla A, Shishir D, Gokhale A, Bandyopadhyay S and Saha K 2022 Sci. Rep. 12 8743
[36] Hirose M, Aiello C D and Cappellaro P 2012 Phys. Rev. A 86 062320
[37] McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H and Ludlow A D 2018 Nature 564 87
[38] Dörscher S, Al-Masoudi A, Bober M, Schwarz R, Hobson R, Sterr U and Lisdat C 2020 Commun. Phys. 3 185
[39] Aharon N, Spethmann N and Leroux I D 2019 New J. Phys. 21 083040
[40] Stray B, Lamb A, Kaushik A, et al. 2022 Nature 602 590
[41] Salducci C, Bidel Y, Cadoret M, Darmon S, Zahzam N, Bonnin A, Schwartz S, Blanchard C and Bresson A 2024 Sci. Adv. 10 4498
[42] Almog I, Loewenthal G, Coslovsky J, Sagi Y and Davidson N 2016 Phys. Rev. A 94 042317
[43] Wang G, Liu Y X, Zhu Y and Cappellaro P 2021 Nano Lett. 21 5143
[44] Wang G, Liu X, Schloss J M, Alsid S T, Braje D A and Cappellaro P 2022 Phys. Rev. X 12 021061
[45] Farfurnik D, Jarmola A, Pham L M, Wang Z H, Dobrovitski V V, Walsworth R L, Budker D and Bar-Gill N 2015 Phys. Rev. B 92 060301
[46] Ryan C A, Hodges J S and Cory D G 2010 Phys. Rev. Lett. 105 200402
[47] Zeng K, Yu X, Plenio M B and Wang Z 2024 Phys. Rev. Lett. 132 250801
[48] Souza Alexandre M, Á lvarez Gonzalo A and Suter Dieter 2012 Phil. Trans. R. Soc. A 370 4748
[49] Degen C L, Reinhard F and Cappellaro P 2017 Rev. Mod. Phys. 89 035002
[50] Braunstein S and Caves C M 1994 Phys. Rev. Lett. 72 3439
[51] Giovannetti V, Lloyd S and Maccone L 2006 Phys. Rev. Lett. 96 010401
[52] Altarev1 I, Baker C A, Ban G, et al. 2009 Phys. Rev. Lett. 103 081602
[53] Zhuang M, Huang J and Lee C 2022 Quantum 6 859
[54] Yen T J, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B, Basov D N and Zhang X 2004 Science 303 1496
[55] Jensen K, Budvytyte R, Thomas R A, Wang T, Fuchs A M, et al. 2016 Sci. Rep. 6 29638
[56] Jiang M, Su H, Garcon A, Peng X and Budker D 2021 Nat. Phys. 17 1402
[57] Sushkov A O 2023 PRX Quantum 4 020101
[58] Zhuang M, Chen S, Huang J and Lee C 2024 Quantum Front. 3 4
[59] Chen S, Zhuang M, Fang R, Chen Y, Han C, Lu B, Huang J and Lee C 2024 Commun. Phys. 7 189
[60] Zhang J, Du P, Jing L, Xu P, You L and Zhang W 2024 Chin. Phys. B 33 030301
[61] Cai J M, Naydenov B, Pfeiffer R, McGuinness L P, Jahnke K D, Jelezko F, Plenio M B and Retzker A 2012 New J. Phys. 14 113023
[62] Morazotti N A C, Silva A H, Audi G, Fanchini F F and Napolitano R J 2024 Phys. Rev. A 110 042601
[63] Trypogeorgos D, Valdés-Curiel A, Lundblad N and Spielma I B 2018 Phys. Rev. A 97 013407
[64] Pham L M, Bar-Gill N, Belthangady C, Sage D L, Cappellaro P, Lukin M D, Yacoby A and Walsworth R L 2012 Phys. Rev. B 86 045214
[65] Shaw A L, Finkelstein R, Tsai R B, Scholl P, Yoon T H, Choi J and Endres M 2024 Nat. Phys. 20 1951
[66] Jiang J, Lu Z, Shen J,Wada T, Kato H and Chen M 2021 Nat. Commun. 12 3843
[67] Aslam N, Zhou H, Urbach E K, Turner M J, Walsworth R L, Lukin M D and Park H 2023 Nat. Rev. Phys. 5 157
[68] Zhou H, Martin L S, Tyler M, Makarova O, Leitao N, Park H and Lukin M D 2023 Phys. Rev. Lett. 131 220803
[69] Jiang J and Chen Q 2024 Phys. Rev. A 110 043714
[70] Butts D L, Kinast J M, Kotru K, Radojevic A M, Timmons B P and Stoner R E 2011 Phys. Rev. A 84 043613
[71] Herbschleb E D, Ohki I, Morita K, Yoshii Y, Kato H, Makino T, Yamasaki S and Mizuochi N 2022 Phys. Rev. Appl. 18 034058
[1] Quasi-two-dimensional isotropic laser cooling of atoms for quantum sensing
Xiao Zhang(张孝), Yi Song(宋屹), Yuan Sun(孙远), and Liang Liu(刘亮). Chin. Phys. B, 2025, 34(8): 084202.
[2] Enhanced measurement precision with continuous interrogation during dynamical decoupling
Jun Zhang(张军), Peng Du(杜鹏), Lei Jing(敬雷), Peng Xu(徐鹏), Li You(尤力), and Wenxian Zhang(张文献). Chin. Phys. B, 2024, 33(3): 030301.
[3] On-chip quantum NOON state sensing for temperature and humidity
Weihong Luo(罗伟宏), Chao Wu(吴超), Yuxing Du(杜昱星), Chang Zhao(赵畅), Miaomiao Yu(余苗苗), Pingyu Zhu(朱枰谕), Kaikai Zhang(张凯凯), and Ping Xu(徐平). Chin. Phys. B, 2024, 33(10): 100305.
[4] Orientation determination of nitrogen-vacancy center in diamond using a static magnetic field
Yangpeng Wang(王杨鹏), Rujian Zhang(章如健), Yan Yang(杨燕), Qin Wu(吴琴), Zhifei Yu(于志飞), and Bing Chen(陈冰). Chin. Phys. B, 2023, 32(7): 070301.
[5] Enhanced phase sensitive amplification towards improving noise immunity
Hui Guo(郭辉), Zhi Li(李治), Hengxin Sun(孙恒信), Kui Liu(刘奎), and Jiangrui Gao(郜江瑞). Chin. Phys. B, 2023, 32(5): 054204.
[6] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[7] Quantum noise of a harmonic oscillator under classical feedback control
Feng Tang(汤丰), Nan Zhao(赵楠). Chin. Phys. B, 2020, 29(9): 090303.
[8] Simulation of the influence of imperfections on dynamical decoupling of a superconducting qubit
Ying-Shan Zhang(张颖珊), Jian-She Liu(刘建设), Chang-Hao Zhao(赵昌昊), Yong-Cheng He(何永成), Da Xu(徐达), Wei Chen(陈炜). Chin. Phys. B, 2019, 28(6): 060201.
[9] Effects of imperfect pulses on dynamical decoupling using quantum trajectory method
Lin-Ze He(何林泽), Man-Chao Zhang(张满超), Chun-Wang Wu(吴春旺), Yi Xie(谢艺), Wei Wu(吴伟), Ping-Xing Chen(陈平形). Chin. Phys. B, 2018, 27(12): 120303.
No Suggested Reading articles found!