Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 030202    DOI: 10.1088/1674-1056/ab7442
GENERAL Prev   Next  

Lax pair and vector semi-rational nonautonomous rogue waves for a coupled time-dependent coefficient fourth-order nonlinear Schrödinger system in an inhomogeneous optical fiber

Zhong Du(杜仲)1, Bo Tian(田播)1, Qi-Xing Qu(屈启兴)2, Xue-Hui Zhao(赵学慧)1
1 State Key Laboratory of Information Photonics and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 School of Information, University of International Business and Economics, Beijing 100029, China
Abstract  Optical fibers are seen in the optical sensing and optical fiber communication. Simultaneous propagation of optical pulses in an inhomogeneous optical fiber is described by a coupled time-dependent coefficient fourth-order nonlinear Schrödinger system, which is discussed in this paper. For such a system, we work out the Lax pair, Darboux transformation, and corresponding vector semi-rational nonautonomous rogue wave solutions. When the group velocity dispersion (GVD) and fourth-order dispersion (FOD) coefficients are the constants, we exhibit the first- and second-order vector semi-rational rogue waves which are composed of the four-petalled rogue waves and eye-shaped breathers. Both the width of the rogue wave along the time axis and temporal separation between the adjacent peaks of the breather decrease with the GVD coefficient or FOD coefficient. With the GVD and FOD coefficients as the linear, cosine, and exponential functions, we respectively present the first- and second-order periodic vector semi-rational rogue waves, first- and second-order asymmetry vector semi-rational rogue waves, and interactions between the eye-shaped breathers and the composite rogue waves.
Received:  18 December 2019      Revised:  07 January 2020      Accepted manuscript online: 
PACS:  02.30.Ik (Integrable systems)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
  04.30.Nk (Wave propagation and interactions)  
Fund: Project supported by the BUPT Excellent Ph.D. Students Foundation (Grant No. CX2019201), the National Natural Science Foundation of China (Grant Nos. 11772017 and 11805020), the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (Grant No. IPOC: 2017ZZ05), and the Fundamental Research Funds for the Central Universities of China (Grant No. 2011BUPTYB02).
Corresponding Authors:  Bo Tian     E-mail:  tian_bupt@163.com

Cite this article: 

Zhong Du(杜仲), Bo Tian(田播), Qi-Xing Qu(屈启兴), Xue-Hui Zhao(赵学慧) Lax pair and vector semi-rational nonautonomous rogue waves for a coupled time-dependent coefficient fourth-order nonlinear Schrödinger system in an inhomogeneous optical fiber 2020 Chin. Phys. B 29 030202

[1] Kowal D, Urbanczyk W and Mergo P 2018 Sensors-Basel 18 915
[2] Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y and Salomon C 2002 Science 296 1290
[3] Lan Z Z and Su J J 2019 Nonlinear Dyn. 96 2535
[4] Musslimani Z H, Makris K G, El-Ganainy R and Christodoulides D N 2008 Phys. Rev. Lett. 100 030402
[5] Xie X Y and Meng G Q 2019 Eur. Phys. J. Plus 134 359
[6] Messouber A, Triki H, Azzouzi F, Zhou Q, Biswas A, Moshokoa S P and Belic M 2018 Opt. Commun. 425 64
[7] Xie X Y, Yang S K, Ai C H and Kong L C 2020 Phys. Lett. A 384 126119
[8] Akhmediev N, Soto-Crespo J M and Ankiewicz A 2009 Phys. Rev. A 80 043818
[9] Mahnke C and Mitschke F 2012 Phys. Rev. A 85 033808
[10] Akhmediev N, Dudley J M, Solli D R and Turitsyn S K 2013 J. Opt. 15 060201
[11] Wang L, Zhang J H, Wang Z Q, Liu C, Li M, Qi F H and Guo R 2016 Phys. Rev. E 93 012214
[12] Wang X B, Tian S F and Zhang T T 2018 Proc. Am. Math. Soc. 146 3353
[13] Solli D R, Ropers C, Koonath P and Jalali B 2007 Nature 450 1054
[14] Wang X B, Tian S F, Feng L L and Zhang T T 2018 J. Math. Phys. 59 073505
[15] Akhmediev N, Ankiewicz A and Taki M 2009 Phys. Lett. A 373 675
[16] Liu Y K and Li B 2017 Chin. Phys. Lett. 34 10202
[17] Zhao L C, Yang Z Y and Yang W L 2019 Chin. Phys. B 28 010501
[18] Chen S, Soto-Crespo J M, Baronio F, Grelu P and Mihalache D 2016 Opt. Exp. 24 15251
[19] Ankiewicz A, Kedziora D J and Akhmediev N 2011 Phys. Lett. A 375 2782
[20] Lecaplain C, Grelu P, Soto-Crespo J M and Akhmediev N 2012 Phys. Rev. Lett. 108 233901
[21] Wang X B and Han B 2020 J. Phys. Soc. Jpn. 89 014001
[22] Baronio F, Degasperis A, Conforti M and Wabnitz S 2012 Phys. Rev. Lett. 109 044102
[23] Degasperis A and Lombardo S 2013 Phys. Rev. E 88 052914
[24] Wang X B and Han B 2019 Europhys. Lett. 126 15001
[25] Zhang G and Yan Z 2019 Proc. R. Soc. A 475 20180625
[26] Zhang G and Yan Z 2018 Proc. R. Soc. A 474 20170688
[27] Zhang G and Yan Z 2018 Commun. Nonlinear Sci. Numer. Simulat. 62 117
[28] Zhong W P, Belić M and Malomed B A 2015 Phys. Rev. E 92 053201
[29] Liu D Y, Tian B and Xie X Y 2017 Laser Phys. 27 035403
[30] Li M Z, Tian B, Qu Q X, Chai H P, Liu L and Du Z 2017 Superlattice. Microst. 112 20
[31] Du Z, Tian B, Chai H P, Sun Y and Zhao X H 2018 Chaos Soliton. Fract. 109 90
[32] Gao X Y 2019 Appl. Math. Lett. 91 165
[33] Gao X Y, Guo Y J and Shan W R 2020 Appl. Math. Lett. 104 106170
[34] Su J J, Gao Y T, Deng G F and Jia T T 2019 Phys. Rev. E 100 042210
[35] Jia T T, Gao Y T, Deng G F and Hu L 2019 Nonlinear Dyn. 98 269
[36] Deng G F, Gao Y T, Su J J, Ding C C and Jia T T 2020 Nonlinear Dyn. 99 1039
[37] Ablowitz M J, Kaup D J, Newell A C and Segur H 1973 Phys. Rev. Lett. 31 125
[38] Guo B, Ling L and Liu Q 2012 Phys. Rev. E 85 026607
[1] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[2] Matrix integrable fifth-order mKdV equations and their soliton solutions
Wen-Xiu Ma(马文秀). Chin. Phys. B, 2023, 32(2): 020201.
[3] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[4] Reciprocal transformations of the space-time shifted nonlocal short pulse equations
Jing Wang(王静), Hua Wu(吴华), and Da-Jun Zhang(张大军). Chin. Phys. B, 2022, 31(12): 120201.
[5] Rogue waves of a (3+1)-dimensional BKP equation
Yu-Qiang Yuan(袁玉强), Xiao-Yu Wu(武晓昱), and Zhong Du(杜仲). Chin. Phys. B, 2022, 31(12): 120202.
[6] Riemann-Hilbert approach and N double-pole solutions for a nonlinear Schrödinger-type equation
Guofei Zhang(张国飞), Jingsong He(贺劲松), and Yi Cheng(程艺). Chin. Phys. B, 2022, 31(11): 110201.
[7] Oscillation properties of matter-wave bright solitons in harmonic potentials
Shu-Wen Guan(关淑文), Ling-Zheng Meng(孟令正), and Li-Chen Zhao(赵立臣). Chin. Phys. B, 2022, 31(8): 080506.
[8] Quantum fields presentation and generating functions of symplectic Schur functions and symplectic universal characters
Denghui Li(李登慧), Fei Wang(王菲), and Zhaowen Yan(颜昭雯). Chin. Phys. B, 2022, 31(8): 080202.
[9] Solutions of novel soliton molecules and their interactions of (2 + 1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation
Hong-Cai Ma(马红彩), Yi-Dan Gao(高一丹), and Ai-Ping Deng(邓爱平). Chin. Phys. B, 2022, 31(7): 070201.
[10] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[11] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[12] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
[13] Residual symmetries, consistent-Riccati-expansion integrability, and interaction solutions of a new (3+1)-dimensional generalized Kadomtsev—Petviashvili equation
Jian-Wen Wu(吴剑文), Yue-Jin Cai(蔡跃进), and Ji Lin(林机). Chin. Phys. B, 2022, 31(3): 030201.
[14] Soliton molecules and asymmetric solitons of the extended Lax equation via velocity resonance
Hongcai Ma(马红彩), Yuxin Wang(王玉鑫), and Aiping Deng(邓爱平). Chin. Phys. B, 2022, 31(1): 010201.
[15] Exact solution of an integrable quantum spin chain with competing interactions
Jian Wang(王健), Yi Qiao(乔艺), Junpeng Cao(曹俊鹏), and Wen-Li Yang(杨文力). Chin. Phys. B, 2021, 30(11): 117501.
No Suggested Reading articles found!