Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 070201    DOI: 10.1088/1674-1056/adcdf1
GENERAL   Next  

Prolongation structure and Darboux transformation of nonlinear mixed gas equations

Lixiu Wang(王立秀) and Yangjie Jia(加羊杰)†
School of Mathematics and Statistics, Qinghai Normal University, Xining 810008, China
Abstract  The widespread popularization and application of laser technology have provided a powerful tool for a deeper understanding of the material world and given birth to several emerging research fields. This study mainly focuses on the following three key aspects. First, the classical ensemble method is adopted to conduct a comprehensive and in-depth analysis of two-dimensional (2D) matter-wave pulses in Bose-Fermi mixed gases (including linear and nonlinear pulses). Second, under the strict constraints of unitary systems, a coupled $\mathrm{KdV}$ equation is successfully derived, and the prolongation structure theory is skillfully used to carry out detailed calculations and analyses on this equation. Thus, the prolongation algebra of this equation is accurately determined, and the corresponding $\mathrm{Lax}$ pair is rigorously derived. Finally, based on the carefully obtained $\mathrm{Lax}$ pair from the prolongation structure theory, the soliton solutions of this equation are further analyzed in depth, and intuitive images of each soliton solution are carefully drawn. This lays a solid foundation for subsequent detailed research on these soliton characteristics and provides great convenience.
Keywords:  Bose-Fermi      mixture      prolongation structure      Lax pair      Darboux transformation  
Received:  26 February 2025      Revised:  16 April 2025      Accepted manuscript online:  17 April 2025
PACS:  02.30.Jr (Partial differential equations)  
  03.67.Bg (Entanglement production and manipulation)  
  03.75.Gg (Entanglement and decoherence in Bose-Einstein condensates)  
  03.75.Nt (Other Bose-Einstein condensation phenomena)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12261072).
Corresponding Authors:  Yangjie Jia     E-mail:  jiayangjie123@163.com

Cite this article: 

Lixiu Wang(王立秀) and Yangjie Jia(加羊杰) Prolongation structure and Darboux transformation of nonlinear mixed gas equations 2025 Chin. Phys. B 34 070201

[1] Emad Az-Zobi 2019 Int. J. Math. Comput. Sci. 14 635
[2] Li C 2024 Phys. Lett. B 855 138771
[3] Yang G Y and Liu Q P 2008 Chin. Phys. Lett. 25 1
[4] Li C, Mironov A and Orlov A Y 2025 Phys. Lett. B 860 139170
[5] Rao J G, Cheng Y and He J S 2017 Stud. Appl. Math. 139 568
[6] Estabrook F B and Wahlquist H D 1975 J. Math. Phys. 16 1
[7] Estabrook F B and Wahlquist H D 1976 J. Math. Phys. 17 1293
[8] Zhao W Z, Bai Y Q and Wu K 2006 Phys. Lett. A 3 52
[9] Ding P B, Li Z L, et al. 2024 Chin. Phys. B 33 063402
[10] Li Z L, et al. 2023 Chin. Phys. B 32 023701
[11] Lou S Y, et al. 2023 Chin. Phys. Lett. 40 020201
[12] Ablowitz M J 1992 Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge: Cambridge University Press) pp. 70-152
[13] Hirota R 2004 The Direct Method in Soliton Theory (Cambridge: Cambridge University Press) pp. 1-58
[14] Matveev V B and Salle M A 1991 Darboux Transformation and Solitons (Springer-Verlag) p. 120
[15] Alfinito E, Grassi V and Leo R A 1997 Soliani Inverse Problems 14 1387
[16] Gilson C R, Nimmo J J C and Ohta Y 2007 J. Phys. A 76 24
[17] Wang D S, Liu Jand Zhang Z F 2016 Math. Methods Appl. Sci. 39 3516
[18] Wang D S and Zhang Z F 2009 J. Phys. A: Math. Theor. 42 035209
[19] Geng X G and Wu Y T 1997 J. Math. Phys. 38 3069
[20] Ma W X 2022 Appl. Math. Lett. 131 108074
[21] Ma W X 2022 J. Geometry Phys. 177 104522
[22] Lou S Y 2024 Commun. Theor. Phys. 76 035006
[23] Hu X B and Li Y 1991 J. Phys. A: Math. Gen. 24 1979
[24] Adhikari S K and Salasnich L 2008 Phys. Rev. A 78 043616
[25] Lin M M 2006 Chaos, Solitons and Fractals 28 1212
[26] Ma W X 2013 AIP Conference Proceedings 1562 105
[1] Dual-species stimulated deceleration of MgF molecules with Rb atoms
Jin Wei(魏晋), Di Wu(吴迪), Chenyu Zu(祖晨宇), Yong Xia(夏勇), and Jianping Yin(印建平). Chin. Phys. B, 2025, 34(7): 073701.
[2] General relaxation model for a homogeneous plasma with spherically symmetric velocity space
Yanpeng Wang(王彦鹏), Shichao Wu(吴士超), and Peifeng Fan(范培峰). Chin. Phys. B, 2025, 34(6): 065201.
[3] Dynamical analysis and localized waves of the n-component nonlinear Schrödinger equation with higher-order effects
Yu Lou(娄瑜) and Guoan Xu(许国安). Chin. Phys. B, 2025, 34(3): 030201.
[4] Relaxation model for a homogeneous plasmas with spherically symmetric velocity space
Yanpeng Wang(王彦鹏), Jianyuan Xiao(肖建元), Xianhao Rao(饶贤昊), Pengfei Zhang(张鹏飞), Yolbarsop Adil(阿迪里), and Ge Zhuang(庄革). Chin. Phys. B, 2025, 34(1): 015202.
[5] Effect of lattice distortion on spin admixture and quantum transport in organic devices with spin-orbit coupling
Ying Wang(王莹), Dan Li(李丹), Xinying Sun(孙新英), Huiqing Zhang(张惠晴), Han Ma(马晗), Huixin Li(李慧欣), Junfeng Ren(任俊峰), Chuankui Wang(王传奎), and Guichao Hu(胡贵超). Chin. Phys. B, 2024, 33(7): 077101.
[6] An integrable generalization of the Fokas-Lenells equation: Darboux transformation, reduction and explicit soliton solutions
Jiao Wei(魏姣), Xianguo Geng(耿献国), and Xin Wang(王鑫). Chin. Phys. B, 2024, 33(7): 070202.
[7] Optimal preparation of Bose and Fermi atomic gas mixtures of 87Rb and 40K in a crossed optical dipole trap
Peibo Ding(丁培波), Biao Shan(单标), Yuhang Zhao(赵宇航), Yajing Yang(杨雅婧), Liangchao Chen(陈良超), Zengming Meng(孟增明), Pengjun Wang(王鹏军), and Lianghui Huang(黄良辉). Chin. Phys. B, 2024, 33(6): 063402.
[8] Sensing the heavy water concentration in an H2O—D2O mixture by solid—solid phononic crystals
Mohammadreza Rahimi and Ali Bahrami. Chin. Phys. B, 2024, 33(4): 044301.
[9] Asymptotic analysis on bright solitons and breather solutions of a generalized higher-order nonlinear Schrödinger equation in an optical fiber or a planar waveguide
Xin Zhao(赵鑫), Zhong Du(杜仲), Li-Jian Zhou(周立俭), Rong-Xiang Liu(刘荣香), and Xu-Hu Wang(王绪虎). Chin. Phys. B, 2024, 33(11): 110204.
[10] Breather and its interaction with rogue wave of the coupled modified nonlinear Schrödinger equation
Ming Wang(王明), Tao Xu(徐涛), Guoliang He(何国亮), and Yu Tian(田雨). Chin. Phys. B, 2023, 32(5): 050503.
[11] Positon and hybrid solutions for the (2+1)-dimensional complex modified Korteweg-de Vries equations
Feng Yuan(袁丰) and Behzad Ghanbari. Chin. Phys. B, 2023, 32(4): 040201.
[12] Quantum degenerate Bose-Fermi atomic gas mixture of 23Na and 40K
Ziliang Li(李子亮), Zhengyu Gu(顾正宇), Zhenlian Shi(师振莲), Pengjun Wang(王鹏军), and Jing Zhang(张靖). Chin. Phys. B, 2023, 32(2): 023701.
[13] Diverse soliton solutions and dynamical analysis of the discrete coupled mKdV equation with 4×4 Lax pair
Xue-Ke Liu(刘雪珂) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2023, 32(12): 120203.
[14] Darboux transformation, infinite conservation laws, and exact solutions for the nonlocal Hirota equation with variable coefficients
Jinzhou Liu(刘锦洲), Xinying Yan(闫鑫颖), Meng Jin(金梦), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2023, 32(12): 120401.
[15] Rational solutions of Painlevé-II equation as Gram determinant
Xiaoen Zhang(张晓恩) and Bing-Ying Lu(陆冰滢). Chin. Phys. B, 2023, 32(12): 120205.
No Suggested Reading articles found!