Abstract A compact Grammian form for N-breather solution to the complex mKdV equation is derived using the bilinear Kadomtsev-Petviashvili hierarchy reduction method. The propagation trajectory, period, maximum points, and peak value of the 1-breather solution are calculated. Additionally, through the asymptotic analysis of 2-breather solution, we show that two breathers undergo an elastic collision. By applying the generalized long-wave limit method, the fundamental and second-order rogue wave solutions for the complex mKdV equation are obtained from the 1-breather and 2-breather solutions, respectively. We also construct the hybrid solution of a breather and a fundamental rogue wave for the complex mKdV equation from the 2-breather solution. Furthermore, the hybrid solution of two breathers and a fundamental rogue wave as well as the hybrid solution of a breather and a second-order rogue wave for the complex mKdV equation are derived from the 3-breather solution via the generalized long-wave limit method. By controlling the phase parameters of breathers, the diverse phenomena of interaction between the breathers and the rogue waves are demonstrated.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12061051 and 12461048).
Corresponding Authors:
Hasi Gegen
E-mail: gegen@imu.edu.cn
Cite this article:
Wenjing Hu(胡文静) and Hasi Gegen(葛根哈斯) An N-breather solution and hybrid solutions of rogue wave and breather for complex mKdV equation 2025 Chin. Phys. B 34 070202
[1] Infeld E and Rowlands G 2000 Nonlinear Waves, Solitons and Chaos (Cambridge: Cambridge University Press) [2] Yang J K 2010 Nonlinear Waves in Integrable and Nonintegrable Systems (Philadelphia: SIAM) [3] Ablowitz M J and Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge: Cambridge University Press) [4] Leblond H, Triki H, Sanchez F and Mihalache D 2012 Opt. Commun. 285 356 [5] Leblond H and Mihalache D 2011 Rom. Rep. Phys. 63 1254 [6] Rodríguez R F, Reyes J A, Espinosa-Cerón A, Fujioka J and Malomed B A 2003 Phys. Rev. E 68 036606 [7] Rodríguez R F and Fujioka J 2010 New Trends In Statistical Physics: Festschrift in Honor of Leopoldo García-Colín’s 80th Birthday (Singapore: World Scientific) pp. 37-56 [8] Karpman V I, Rasmussen J J and Shagalov A G 2001 Phys. Rev. E 64 026614 [9] Bludov Y V, Konotop V V and Akhmediev N 2009 Phys. Rev. A 80 033610 [10] Draper L 1966 Weather 21 2 [11] Peng W Q, Tian S F, Zhang T T and Fang Y 2019 Math. Meth. Appl. Sci. 42 6865 [12] Pu J C, Li J and Chen Y 2021 Chin. Phys. B 30 060202 [13] Ding C C, Zhou Q, Xu S L, Triki H, Mirzazadeh M and Liu W J 2023 Chin. Phys. Lett. 40 040501 [14] Peng W Q 2025 Appl. Math. Model. 137 115726 [15] Wang M, Xu T, He G L and Tian Y 2023 Chin. Phys. B 32 050503 [16] Kharif C, Pelinovsky E and Slunyaev A 2008 Rogue Waves in the Ocean (Heidelberg: Springer) [17] Dysthe K, Krogstad H E and Müller P 2008 Annu. Rev. Fluid Mech. 40 287 [18] Shats M, Punzmann H and Xia H 2010 Phys. Rev. Lett. 104 104503 [19] Bailung H, Sharma S K and Nakamura Y 2011 Phys. Rev. Lett. 107 255005 [20] Ganshin A N, Efimov V B, Kolmakov G V, Mezhov-Deglin L P and McClintock P V E 2008 Phys. Rev. Lett. 101 065303 [21] Solli D R, Ropers C, Koonath P and Jalali B 2007 Nature 450 1054 [22] Onorato M, Residori S, Bortolozzo U, Montina A and Arecchi F T 2013 Phys. Rep. 528 47 [23] Dudley J M, Genty G and Eggleton B J 2008 Opt. Express 16 3644 [24] Dudley J M, Genty G, Mussot A, Chabchoub A and Dias F 2019 Nat. Rev. Phys. 1 675 [25] Waseda T, Kinoshita T and Tamura H 2009 J. Phys. Oceanogr. 39 621 [26] Runge A F J, Aguergaray C, Broderick N G R and Erkintalo M 2014 Opt. Lett. 39 319 [27] Ablowitz M J, Kaup D J, Newell A C and Segur H 1973 Phys. Rev. Lett. 30 1262 [28] Kuznetsov E A 1977 Sov. Phys. Dokl. 22 507 [29] Akhmediev N N and Korneev V I 1986 Theor. Math. Phys. 69 1089 [30] Tajiri M and Watanabe Y 1998 Phys. Rev. E 57 3510 [31] Kibler B, Fatome J, Finot C, Millot G, Genty G, Wetzel B, Akhmediev N, Dias F and Dudley J M 2012 Sci. Rep. 2 463 [32] Dudley J M, Genty G, Dias F, Kibler B and Akhmediev N 2009 Opt. Express 17 21497 [33] Van Simaeys G, Emplit P and Haelterman M 2001 Phys. Rev. Lett. 87 033902 [34] Yu M, Jang J K, Okawachi Y, Griffith A G, Luke K, Miller S A, Ji X C, Lipson M and Gaeta A L 2017 Nat. Commun. 8 14569 [35] Peng J S, Boscolo S, Zhao Z H and Zeng H P 2019 Sci. Adv. 5 eaax1110 [36] Salman H 2013 Phys. Rev. Lett. 111 165301 [37] Peregrine D H 1983 J. Aust. Math. Soc. B 25 16 [38] Zhang Z, Yang X Y, Li B, Wazwaz A M and Guo Q 2022 Phys. Lett. A 450 128395 [39] Chen S J and Lü X 2024 Commun. Theor. Phys. 76 035003 [40] Zhang Y S, Tao X X and Xu S W 2020 Inverse Probl. 36 065003 [41] Wazwaz A M 2005 Comput. Math. Appl. 49 1101 [42] Liu C, Ren Y, Yang Z Y and Yang W L 2017 Chaos 27 083120 [43] Zha Q L 2013 Phys. Scr. 87 065401 [44] He J S, Wang L H, Li L J, Porsezian K and Erdélyi R 2014 Phys. Rev. E 89 062917 [45] Liu Y F, Guo R and Li H 2015 Mod. Phys. Lett. B 29 1550129 [46] Ma Y L and Li B Q 2022 Eur. Phys. J. Plus 137 1 [47] Yang B and Yang J K 2024 Rogue Waves in Integrable Systems (Switzerland: Springer) [48] Date E, Jimbo M, Kashiwara M and Miwa T 1983 Transformation Groups for Soliton Equations (Singapore: World Scientific) [49] Ohta Y and Yang J K 2012 Proc. R. Soc. A 468 1716 [50] Chen J C, Chen Y, Feng B F and Maruno K 2017 arXiv: 1712.00945 [51] Yang B, Chen J C and Yang J K 2020 J. Nonlinear Sci. 30 3027 [52] Ohta Y and Yang J K 2014 J. Phys. A 47 255201 [53] Ohta Y and Yang J K 2012 Phys. Rev. E 86 036604 [54] Ohta Y and Yang J K 2013 J. Phys. A 46 105202 [55] Yang B and Yang J K 2021 IMA J. Appl. Math. 86 378 [56] Yang B and Yang J K 2020 J. Phys. Soc. Jpn. 89 024003 [57] Feng B F, Ma R Y and Zhang Y J 2022 Physica D 439 133360 [58] Wang T Y, Qin Z Y, Mu G and Zheng F Z 2023 Appl. Math. Lett. 140 108571 [59] Yang B and Yang J K 2023 Stud. Appl. Math. 151 60 [60] Yang B and Yang J K 2024 Appl. Math. Lett. 148 108871 [61] Yang B and Yang J K 2024 Chaos 34 073148 [62] Hirota R 2004 The Direct Method in Soliton Theory (Cambridge: Cambridge University Press)
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.