Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 070202    DOI: 10.1088/1674-1056/adcdef
GENERAL Prev   Next  

An N-breather solution and hybrid solutions of rogue wave and breather for complex mKdV equation

Wenjing Hu(胡文静) and Hasi Gegen(葛根哈斯)†
School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China
Abstract  A compact Grammian form for N-breather solution to the complex mKdV equation is derived using the bilinear Kadomtsev-Petviashvili hierarchy reduction method. The propagation trajectory, period, maximum points, and peak value of the 1-breather solution are calculated. Additionally, through the asymptotic analysis of 2-breather solution, we show that two breathers undergo an elastic collision. By applying the generalized long-wave limit method, the fundamental and second-order rogue wave solutions for the complex mKdV equation are obtained from the 1-breather and 2-breather solutions, respectively. We also construct the hybrid solution of a breather and a fundamental rogue wave for the complex mKdV equation from the 2-breather solution. Furthermore, the hybrid solution of two breathers and a fundamental rogue wave as well as the hybrid solution of a breather and a second-order rogue wave for the complex mKdV equation are derived from the 3-breather solution via the generalized long-wave limit method. By controlling the phase parameters of breathers, the diverse phenomena of interaction between the breathers and the rogue waves are demonstrated.
Keywords:  complex mKdV equation      hybrid solutions of breather and rogue wave      KP hierarchy reduction method      generalized long-wave limit method  
Received:  20 February 2025      Revised:  12 April 2025      Accepted manuscript online:  17 April 2025
PACS:  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  04.30.Nk (Wave propagation and interactions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12061051 and 12461048).
Corresponding Authors:  Hasi Gegen     E-mail:  gegen@imu.edu.cn

Cite this article: 

Wenjing Hu(胡文静) and Hasi Gegen(葛根哈斯) An N-breather solution and hybrid solutions of rogue wave and breather for complex mKdV equation 2025 Chin. Phys. B 34 070202

[1] Infeld E and Rowlands G 2000 Nonlinear Waves, Solitons and Chaos (Cambridge: Cambridge University Press)
[2] Yang J K 2010 Nonlinear Waves in Integrable and Nonintegrable Systems (Philadelphia: SIAM)
[3] Ablowitz M J and Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge: Cambridge University Press)
[4] Leblond H, Triki H, Sanchez F and Mihalache D 2012 Opt. Commun. 285 356
[5] Leblond H and Mihalache D 2011 Rom. Rep. Phys. 63 1254
[6] Rodríguez R F, Reyes J A, Espinosa-Cerón A, Fujioka J and Malomed B A 2003 Phys. Rev. E 68 036606
[7] Rodríguez R F and Fujioka J 2010 New Trends In Statistical Physics: Festschrift in Honor of Leopoldo García-Colín’s 80th Birthday (Singapore: World Scientific) pp. 37-56
[8] Karpman V I, Rasmussen J J and Shagalov A G 2001 Phys. Rev. E 64 026614
[9] Bludov Y V, Konotop V V and Akhmediev N 2009 Phys. Rev. A 80 033610
[10] Draper L 1966 Weather 21 2
[11] Peng W Q, Tian S F, Zhang T T and Fang Y 2019 Math. Meth. Appl. Sci. 42 6865
[12] Pu J C, Li J and Chen Y 2021 Chin. Phys. B 30 060202
[13] Ding C C, Zhou Q, Xu S L, Triki H, Mirzazadeh M and Liu W J 2023 Chin. Phys. Lett. 40 040501
[14] Peng W Q 2025 Appl. Math. Model. 137 115726
[15] Wang M, Xu T, He G L and Tian Y 2023 Chin. Phys. B 32 050503
[16] Kharif C, Pelinovsky E and Slunyaev A 2008 Rogue Waves in the Ocean (Heidelberg: Springer)
[17] Dysthe K, Krogstad H E and Müller P 2008 Annu. Rev. Fluid Mech. 40 287
[18] Shats M, Punzmann H and Xia H 2010 Phys. Rev. Lett. 104 104503
[19] Bailung H, Sharma S K and Nakamura Y 2011 Phys. Rev. Lett. 107 255005
[20] Ganshin A N, Efimov V B, Kolmakov G V, Mezhov-Deglin L P and McClintock P V E 2008 Phys. Rev. Lett. 101 065303
[21] Solli D R, Ropers C, Koonath P and Jalali B 2007 Nature 450 1054
[22] Onorato M, Residori S, Bortolozzo U, Montina A and Arecchi F T 2013 Phys. Rep. 528 47
[23] Dudley J M, Genty G and Eggleton B J 2008 Opt. Express 16 3644
[24] Dudley J M, Genty G, Mussot A, Chabchoub A and Dias F 2019 Nat. Rev. Phys. 1 675
[25] Waseda T, Kinoshita T and Tamura H 2009 J. Phys. Oceanogr. 39 621
[26] Runge A F J, Aguergaray C, Broderick N G R and Erkintalo M 2014 Opt. Lett. 39 319
[27] Ablowitz M J, Kaup D J, Newell A C and Segur H 1973 Phys. Rev. Lett. 30 1262
[28] Kuznetsov E A 1977 Sov. Phys. Dokl. 22 507
[29] Akhmediev N N and Korneev V I 1986 Theor. Math. Phys. 69 1089
[30] Tajiri M and Watanabe Y 1998 Phys. Rev. E 57 3510
[31] Kibler B, Fatome J, Finot C, Millot G, Genty G, Wetzel B, Akhmediev N, Dias F and Dudley J M 2012 Sci. Rep. 2 463
[32] Dudley J M, Genty G, Dias F, Kibler B and Akhmediev N 2009 Opt. Express 17 21497
[33] Van Simaeys G, Emplit P and Haelterman M 2001 Phys. Rev. Lett. 87 033902
[34] Yu M, Jang J K, Okawachi Y, Griffith A G, Luke K, Miller S A, Ji X C, Lipson M and Gaeta A L 2017 Nat. Commun. 8 14569
[35] Peng J S, Boscolo S, Zhao Z H and Zeng H P 2019 Sci. Adv. 5 eaax1110
[36] Salman H 2013 Phys. Rev. Lett. 111 165301
[37] Peregrine D H 1983 J. Aust. Math. Soc. B 25 16
[38] Zhang Z, Yang X Y, Li B, Wazwaz A M and Guo Q 2022 Phys. Lett. A 450 128395
[39] Chen S J and Lü X 2024 Commun. Theor. Phys. 76 035003
[40] Zhang Y S, Tao X X and Xu S W 2020 Inverse Probl. 36 065003
[41] Wazwaz A M 2005 Comput. Math. Appl. 49 1101
[42] Liu C, Ren Y, Yang Z Y and Yang W L 2017 Chaos 27 083120
[43] Zha Q L 2013 Phys. Scr. 87 065401
[44] He J S, Wang L H, Li L J, Porsezian K and Erdélyi R 2014 Phys. Rev. E 89 062917
[45] Liu Y F, Guo R and Li H 2015 Mod. Phys. Lett. B 29 1550129
[46] Ma Y L and Li B Q 2022 Eur. Phys. J. Plus 137 1
[47] Yang B and Yang J K 2024 Rogue Waves in Integrable Systems (Switzerland: Springer)
[48] Date E, Jimbo M, Kashiwara M and Miwa T 1983 Transformation Groups for Soliton Equations (Singapore: World Scientific)
[49] Ohta Y and Yang J K 2012 Proc. R. Soc. A 468 1716
[50] Chen J C, Chen Y, Feng B F and Maruno K 2017 arXiv: 1712.00945
[51] Yang B, Chen J C and Yang J K 2020 J. Nonlinear Sci. 30 3027
[52] Ohta Y and Yang J K 2014 J. Phys. A 47 255201
[53] Ohta Y and Yang J K 2012 Phys. Rev. E 86 036604
[54] Ohta Y and Yang J K 2013 J. Phys. A 46 105202
[55] Yang B and Yang J K 2021 IMA J. Appl. Math. 86 378
[56] Yang B and Yang J K 2020 J. Phys. Soc. Jpn. 89 024003
[57] Feng B F, Ma R Y and Zhang Y J 2022 Physica D 439 133360
[58] Wang T Y, Qin Z Y, Mu G and Zheng F Z 2023 Appl. Math. Lett. 140 108571
[59] Yang B and Yang J K 2023 Stud. Appl. Math. 151 60
[60] Yang B and Yang J K 2024 Appl. Math. Lett. 148 108871
[61] Yang B and Yang J K 2024 Chaos 34 073148
[62] Hirota R 2004 The Direct Method in Soliton Theory (Cambridge: Cambridge University Press)
[1] New interaction solutions in Mel’nikov equation obtained by modulating the phase shift
Mi Chen(陈觅) and Zhen Wang(王振). Chin. Phys. B, 2025, 34(4): 040201.
[2] Trajectory equations of interaction and evolution behaviors of a novel multi-soliton to a (2+1)-dimensional shallow water wave model
Xi-Yu Tan(谭茜宇) and Wei Tan(谭伟). Chin. Phys. B, 2025, 34(4): 040202.
[3] Abundant invariant solutions of (3+1)-dimensional combined pKP-BKP equation
Hengchun Hu(胡恒春) and Xu Xu(徐旭). Chin. Phys. B, 2025, 34(3): 030501.
[4] Darboux transformation, positon solution, and breather solution of the third-order flow Gerdjikov-Ivanov equation
Shuzhi Liu(刘树芝), Ning-Yi Li(李宁逸), Xiaona Dong(董晓娜), and Maohua Li(李茂华). Chin. Phys. B, 2025, 34(1): 010201.
[5] Multiparameter generalized universal characters and multiparameter generalized B-type universal characters
Jingfan Wang(王竸凡) and Zhaowen Yan(颜昭雯). Chin. Phys. B, 2025, 34(1): 010203.
[6] Abundant invariant solutions of extended (3+1)-dimensional KP-Boussinesq equation
Hengchun Hu(胡恒春) and Jiali Kang(康佳丽). Chin. Phys. B, 2024, 33(11): 110206.
[7] Dynamics of fundamental and double-pole breathers and solitons for a nonlinear Schrödinger equation with sextic operator under non-zero boundary conditions
Luyao Zhang(张路瑶) and Xiyang Xie(解西阳). Chin. Phys. B, 2024, 33(9): 090207.
[8] Multi-soliton solutions of coupled Lakshmanan-Porsezian-Daniel equations with variable coefficients under nonzero boundary conditions
Hui-Chao Zhao(赵会超), Lei-Nuo Ma(马雷诺), and Xi-Yang Xie(解西阳). Chin. Phys. B, 2024, 33(8): 080201.
[9] An integrable generalization of the Fokas-Lenells equation: Darboux transformation, reduction and explicit soliton solutions
Jiao Wei(魏姣), Xianguo Geng(耿献国), and Xin Wang(王鑫). Chin. Phys. B, 2024, 33(7): 070202.
[10] Multi-soliton solutions, breather-like and bound-state solitons for complex modified Korteweg-de Vries equation in optical fibers
Zhong-Zhou Lan(兰中周). Chin. Phys. B, 2024, 33(6): 060201.
[11] Higher-dimensional Chen—Lee—Liu equation and asymmetric peakon soliton
Qiao-Hong Han(韩巧红) and Man Jia(贾曼). Chin. Phys. B, 2024, 33(4): 040202.
[12] Localized wave solutions and interactions of the (2+1)-dimensional Hirota—Satsuma—Ito equation
Qiankun Gong(巩乾坤), Hui Wang(王惠), and Yunhu Wang(王云虎). Chin. Phys. B, 2024, 33(4): 040505.
[13] Decompositions of the Kadomtsev-Petviashvili equation and their symmetry reductions
Zitong Chen(陈孜童), Man Jia(贾曼), Xiazhi Hao(郝夏芝), and Senyue Lou(楼森岳). Chin. Phys. B, 2024, 33(3): 030201.
[14] Efficient method to calculate the eigenvalues of the Zakharov—Shabat system
Shikun Cui(崔世坤) and Zhen Wang(王振). Chin. Phys. B, 2024, 33(1): 010201.
[15] Rational solutions of Painlevé-II equation as Gram determinant
Xiaoen Zhang(张晓恩) and Bing-Ying Lu(陆冰滢). Chin. Phys. B, 2023, 32(12): 120205.
No Suggested Reading articles found!