PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Relaxation model for a homogeneous plasmas with spherically symmetric velocity space |
Yanpeng Wang(王彦鹏)1, Jianyuan Xiao(肖建元)1,2,†, Xianhao Rao(饶贤昊)1,‡, Pengfei Zhang(张鹏飞)3, Yolbarsop Adil(阿迪里)1, and Ge Zhuang(庄革)1 |
1 School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China; 2 Laoshan Laboratory, Qingdao 266100, China; 3 School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract We derive the transport equations from the Vlasov-Fokker-Planck equation when the velocity space is spherically symmetric. The Shkarofsky's form of Fokker-Planck-Rosenbluth collision operator is employed in the Vlasov-Fokker-Planck equation. A closed-form relaxation model for homogeneous plasmas could be presented in terms of Gauss hypergeometric ${}_2$F$_1$ functions. This has been accomplished based on the Maxwellian mixture model. Furthermore, we demonstrate that classic models such as two-temperature thermal equilibrium model and thermodynamic equilibrium model are special cases of our relaxation model and the zeroth-order Braginskii heat transfer model can also be derived. The present relaxation model is a nonequilibrium model based on the hypothesis that the plasmas system possesses finitely distinguishable independent features, without relying on the conventional near-equilibrium assumption.
|
Received: 03 July 2024
Revised: 02 November 2024
Accepted manuscript online: 19 November 2024
|
PACS:
|
52.65.Ff
|
(Fokker-Planck and Vlasov equation)
|
|
52.25.Fi
|
(Transport properties)
|
|
52.25.Dg
|
(Plasma kinetic equations)
|
|
52.35.Sb
|
(Solitons; BGK modes)
|
|
Fund: Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB0500302 and LSKJ202300305). |
Corresponding Authors:
Jianyuan Xiao, Xianhao Rao
E-mail: xiaojy@ustc.edu.cn;rrxxhh@mail.ustc.edu.cn
|
Cite this article:
Yanpeng Wang(王彦鹏), Jianyuan Xiao(肖建元), Xianhao Rao(饶贤昊), Pengfei Zhang(张鹏飞), Yolbarsop Adil(阿迪里), and Ge Zhuang(庄革) Relaxation model for a homogeneous plasmas with spherically symmetric velocity space 2025 Chin. Phys. B 34 015202
|
[1] Chen F F 1984 Introduction to Plasma Physics and Controlled Fusion Volume 1: Plasma Physics, Second Edition (Springer International Publishing) [2] Thomas A G, Tzoufras M, Robinson A P, Kingham R J, Ridgers C P, Sherlock M and Bell A R 2012 J. Comput. Phys. 231 1051 [3] Wang Y P, Xiao J Y, Zheng Y F, Zou Z H, Zhang P F and Zhuang G 2024 Preprint 2408.01616 [4] Wang Y P, Wu S C and Fan P F 2024 Preprint 2409.10060 [5] Taitano W T, Chacón L and Simakov A N 2016 J. Comput. Phys. 318 391 [6] Alouani-Bibi F, Shoucri M M and Matte J P 2004 Comput. Phys. Commun. 164 60 [7] Bell A R, Robinson A P, Sherlock M, Kingham R J and Rozmus W 2006 Plasma Physics and Controlled Fusion 48 R37 [8] Tzoufras M, Bell A R, Norreys P A and Tsung F S 2011 J. Comput. Phys. 230 6475 [9] Boltzmann V L 1970 Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen (Berlin, Boston: De Gruyter) p. 115 [10] Mintzer D 1965 Physics of Fluids 8 1076 [11] Grad H 1949 Communications on Pure and Applied Mathematics 2 331 [12] MacDonald W M, Rosenbluth M N and Chuck W 1957 Phys. Rev. 107 350 [13] Tanenbaum B S 1967 Plasma Physics (McGraw Hill) [14] Chapman S 1916 Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 93 1 [15] Chapman S and Cowling T G 1953 The Mathematical Theory of Non- Uniform Gases (Cambridge University Press) [16] Burnett D 1935 Proceedings of the London Mathematical Society s2-39 385 [17] Schunk R W 1977 Rev. Geophys. 15 429 [18] Li H, Fu Y L, Li J Q and Wang Z X 2023 Chin. Phys. Lett. 40 125201 [19] Hao G, Xu J, Sun Y and Guo Z 2024 Plasma Science and Technology 26 101001 [20] Wang Y 2024 Preprint 2409.12573 [21] Li D Z, Zhang J, Hou J L, Li M and Sun J Z 2024 Chin. Phys. B 33 045204 [22] Teicher H 1963 Source: The Annals of Mathematical Statistics 34 1265 [23] Yakowitz S J and Spragins J D 1968 The Annals of Mathematical Statistics 39 209 [24] Shkarofsky I P 1963 Canadian Journal of Physics 41 1753 [25] Shkarofsky I P, Johnston T W, Bachynski M P and Hirshfield J L 1967 Am. J. Phys. 35 551 [26] Huba J D 2011 NRL Plasma Formulary (NRL) [27] Arfken G and Pan Y K 1971 American Journal of Physics 39 461 [28] Shkarofsky I P 1997 Phys. Plasmas 4 2464 [29] Rackauckas C and Nie Q 2017 Journal of Open Research Software 5 15 [30] Min K and Liu K 2015 Journal of Geophysical Research: Space Physics 120 2739 [31] Gorelenkov N, Pinches S and Toi K 2014 Nuclear Fusion 54 125001 [32] Wiener N 1932 The Ann. Math. 33 1 [33] Vladimirov V S, Drozzinov Y N and Zavialov B I 1988 Tauberian Theorems for Generalized Functions (Netherlands: Springer) [34] Korevaar J 2004 Tauberian Theory, Vol. 329 (Berlin Heidelberg: Springer) [35] Pfeiffer M and Gorji M H 2017 Comput. Phys. Commun. 213 1 [36] Li R, Ren Y and Wang Y 2021 J. Comput. Phys. 434 110235 [37] Rosenblatt M 1956 Proc. Natl. Acad. Sci. USA 42 43 [38] Xiao J, Cai H, Liu J, Yu Z and Zheng Y 2024 arXiv preprint arXiv: 2401.08794 [39] Sharapov S, Alper B, Berk H, Borba D, Breizman B, Challis C, Classen I, Edlund E, Eriksson J, Fasoli A, Fredrickson E, Fu G, Garcia-Munoz M, Gassner T, Ghantous K, Goloborodko V, Gorelenkov N, Gryaznevich M, Hacquin S, Heidbrink W, Hellesen C, Kiptily V, Kramer G, Lauber P, Lilley M, Lisak M, Nabais F, Nazikian R, Nyqvist R, Osakabe M, von Thun C P, Pinches S, Podesta M, Porkolab M, Shinohara K, Schoepf K, Todo Y, Toi K, Zeeland M V, Voitsekhovich I, White R and Yavorskij V 2013 Nuclear Fusion 53 104022 [40] Fong D C L and SaundersM2011 SIAM Journal on Scientific Computing 33 2950 [41] Braginskii S I 1958 J. Exptl. Theoret. Phys. (USSR) 6 459 [42] Banerjee A, Dunson D B and Tokdar S T 2013 Biometrika 100 75 [43] Wynne G, Briol F X and Girolami M 2021 Journal of Machine Learning Research 22 1 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|