|
|
Prediction of collapse process and tipping points for mutualistic and competitive networks with k-core method |
Dongli Duan(段东立)1,†, Feifei Bi(毕菲菲)1, Sifan Li(李思凡)1, Chengxing Wu(吴成星)1, Changchun Lv(吕长春)1, and Zhiqiang Cai(蔡志强)2 |
1 School of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an 710311, China; 2 School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China |
|
|
Abstract Ecosystems generally have the self-adapting ability to resist various external pressures or disturbances, which is always called resilience. However, once the external disturbances exceed the tipping points of the system resilience, the consequences would be catastrophic, and eventually lead the ecosystem to complete collapse. We capture the collapse process of ecosystems represented by plant-pollinator networks with the $k$-core nested structural method, and find that a sufficiently weak interaction strength or a sufficiently large competition weight can cause the structure of the ecosystem to collapse from its smallest $k$-core towards its largest $k$-core. Then we give the tipping points of structure and dynamic collapse of the entire system from the one-dimensional dynamic function of the ecosystem. Our work provides an intuitive and precise description of the dynamic process of ecosystem collapse under multiple interactions, and provides theoretical insights into further avoiding the occurrence of ecosystem collapse.
|
Received: 14 December 2023
Revised: 01 February 2024
Accepted manuscript online: 13 March 2024
|
PACS:
|
02.30.Oz
|
(Bifurcation theory)
|
|
05.10.-a
|
(Computational methods in statistical physics and nonlinear dynamics)
|
|
89.75.Fb
|
(Structures and organization in complex systems)
|
|
91.62.Mn
|
(Ecosystems, structure and dynamics, plant ecology)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 72071153 and 72231008), the Natural Science Foundation of Shaanxi Province (Grant No. 2020JM-486), and the Fund of the Key Laboratory of Equipment Integrated Support Technology (Grant No. 6142003190102). |
Corresponding Authors:
Dongli Duan
E-mail: mineduan@163.com
|
Cite this article:
Dongli Duan(段东立), Feifei Bi(毕菲菲), Sifan Li(李思凡), Chengxing Wu(吴成星), Changchun Lv(吕长春), and Zhiqiang Cai(蔡志强) Prediction of collapse process and tipping points for mutualistic and competitive networks with k-core method 2024 Chin. Phys. B 33 050201
|
[1] Levine J M, Bascompte J, Adler P B and Allesina S 2017 Nature 546 56 [2] Moreno-Mateos D, Alberdi A, Morriën E, van der Putten W H, Rodríguez-Uña A and Montoya D 2020 Nat. Ecol. Evolut. 4 676 [3] Tylianakis J M, Laliberté E, Nielsen A and Bascompte J 2010 Biol. Conserv. 143 2270 [4] Suggitt A J, Wilson R J, Isaac N J, et al. 2018 Nat. Clim. Change 8 713 [5] Hertzog L R, Boonyarittichaikij R, Dekeukeleire D, et al. 2019 Ecology 100 e02653 [6] Bartley T J, McCann K S, Bieg C, Cazelles K, Granados M, Guzzo M M, MacDougall A S, Tunney T D and McMeans B C 2019 Nat. Ecol. Evolut. 3 345 [7] Lenton T M, Rockstrm J, Gaffney O, Rahmstorf S and Schellnhuber H J 2019 Nature 575 592 [8] Dakos V, Matthews B, Hendry A P, Levine J, Loeuille N, Norberg J, Nosil P, Scheffer M and De Meester L 2019 Nat. Ecol. Evolut. 3 355 [9] Reyer C P, Brouwers N, Rammig A, et al. 2015 J. Ecol. 103 5 [10] Sampaio G, Nobre C, Costa M H, Satyamurty P, Soares Filho B S and Cardoso M 2007 Geophys.l Res. Lett. 34 [11] Hirota M, Holmgren M, Van Nes E H and Scheffer M 2011 Science 334 232 [12] Lovejoy T E and Nobre C 2018 Sci. Adv. 4 eaat2340 [13] Chen A, Sanchez A, Dai L and Gore J 2014 Nat. Commun. 5 3713 [14] Dakos V, Matthews B, Hendry A P, Levine J, Loeuille N, Norberg J, Nosil P, Scheffer M and De Meester L 2019 Nat. Ecol. Evolut. 3 355 [15] Moore J C 2018 Proc. Natl. Acad. Sci. USA 115 635 [16] Kong Y X, Shi G Y, Wu R J and Zhang Y C 2019 Phys. Rep. 832 1 [17] García-Algarra J, Pastor J M, Iriondo J M and Galeano J 2017 PeerJ 5 e3321 [18] Baxter G, Dorogovtsev S, Lee K E, Mendes J and Goltsev A 2015 Phys. Rev. X 5 031017 [19] García-Algarra J, Pastor J M, Iriondo J M and Galeano J 2017 PeerJ 5 e3321 [20] Garcia Algarra J, Pastor J M, Mouronte M L and Galeano J 2018 Complexity 2018 6204947 [21] Morone F, Del Ferraro G and Makse H A 2019 Nat. Phys. 15 95 [22] Gao J, Barzel B and Barábasi A L 2016 Nature 530 307 [23] Jiang J, Huang Z G, Seager T P, Lin W, Grebogi C, Hastings A and Lai Y C 2018 Proc. Natl. Acad. Sci. USA 115 E639 [24] Duan D, Wu C and Si S 2022 Physica A 587 126515 [25] Duan D, Wu C, Zhai Y, Lv C and Wang N 2022 Chaos Solitons Fract. 159 112077 [26] Laurence E, Doyon N, Dubé L J and Desrosiers P 2019 Phys. Rev. X 9 011042 [27] Okuyama T and Holland J N 2008 Ecol. Lett. 11 208 [28] Mougi A and Kondoh M 2012 Science 337 349 [29] Duan D, Wu X and Si S 2021 Front. Engin. Manag. 8 572 [30] Lyapunov A M 1992 Int. J. Control 55 531 [31] Arroyo M T K, Armesto J J and Primack R B 1985 Plant Syst. Evolut. 149 187 [32] Dupont Y L, Hansen D M and Olesen J M 2003 Ecography 26 301 [33] Fortuna M A, Ortega R and Bascompte J 2014 arXiv:1403.2575 [qbio.PE] [34] Olesen J M, Eskildsen L I and Venkatasamy S 2002 Diversity Distribut. 8 181 [35] Ramirez N and Brito Y 1992 Botanical J. Linnean Soc. 110 277 [36] Ramirez N 1989 Biotropica 21 319 [37] Small E 1976 Can. Field-Natural. 90 22 [38] Hung K L J, Kingston J M, Albrecht M, Holway D A and Kohn J R 2018 Proc. R. Soc. B 285 20172140 [39] Trøjelsgaard K and Olesen J M 2013 Global Ecol. Biogeography 22 149 [40] Gracia Lázaro C, Hern ández L, Borge-Holthoefer J and Moreno Y 2018 Sci. Rep. 8 9253 [41] Holland J N, DeAngelis D L and Bronstein J L 2002 Am. Natural. 159 231 [42] Thébault E and Fontaine C 2010 Science 329 853 [43] Bregman T P, Lees A C, Seddon N, MacGregor H E, Darski B, Aleixo A, Bonsall M B and Tobias J A 2015 Ecology 96 2692 [44] Traill L W, Lim M L, Sodhi N S and Bradshaw C J 2010 J. Animal Ecol. 79 937 [45] Scheffer M, Bascompte J, Brock W A, Brovkin V, Carpenter S R, Dakos V, Held H, Van Nes E H, Rietkerk M and Sugihara G 2009 Nature 461 53 [46] Veraart A J, Faassen E J, Dakos V, van Nes E H, Lürling M and Scheffer M 2012 Nature 481 357 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|