Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 050201    DOI: 10.1088/1674-1056/ad3341
GENERAL   Next  

Prediction of collapse process and tipping points for mutualistic and competitive networks with k-core method

Dongli Duan(段东立)1,†, Feifei Bi(毕菲菲)1, Sifan Li(李思凡)1, Chengxing Wu(吴成星)1, Changchun Lv(吕长春)1, and Zhiqiang Cai(蔡志强)2
1 School of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an 710311, China;
2 School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  Ecosystems generally have the self-adapting ability to resist various external pressures or disturbances, which is always called resilience. However, once the external disturbances exceed the tipping points of the system resilience, the consequences would be catastrophic, and eventually lead the ecosystem to complete collapse. We capture the collapse process of ecosystems represented by plant-pollinator networks with the $k$-core nested structural method, and find that a sufficiently weak interaction strength or a sufficiently large competition weight can cause the structure of the ecosystem to collapse from its smallest $k$-core towards its largest $k$-core. Then we give the tipping points of structure and dynamic collapse of the entire system from the one-dimensional dynamic function of the ecosystem. Our work provides an intuitive and precise description of the dynamic process of ecosystem collapse under multiple interactions, and provides theoretical insights into further avoiding the occurrence of ecosystem collapse.
Keywords:  complex networks      tipping points      dimension reduction      k-core  
Received:  14 December 2023      Revised:  01 February 2024      Accepted manuscript online:  13 March 2024
PACS:  02.30.Oz (Bifurcation theory)  
  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
  89.75.Fb (Structures and organization in complex systems)  
  91.62.Mn (Ecosystems, structure and dynamics, plant ecology)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 72071153 and 72231008), the Natural Science Foundation of Shaanxi Province (Grant No. 2020JM-486), and the Fund of the Key Laboratory of Equipment Integrated Support Technology (Grant No. 6142003190102).
Corresponding Authors:  Dongli Duan,E-mail:mineduan@163.com     E-mail:  mineduan@163.com

Cite this article: 

Dongli Duan(段东立), Feifei Bi(毕菲菲), Sifan Li(李思凡), Chengxing Wu(吴成星), Changchun Lv(吕长春), and Zhiqiang Cai(蔡志强) Prediction of collapse process and tipping points for mutualistic and competitive networks with k-core method 2024 Chin. Phys. B 33 050201

[1] Levine J M, Bascompte J, Adler P B and Allesina S 2017 Nature 546 56
[2] Moreno-Mateos D, Alberdi A, Morriën E, van der Putten W H, Rodríguez-Uña A and Montoya D 2020 Nat. Ecol. Evolut. 4 676
[3] Tylianakis J M, Lalibérte E, Nielsen A and Bascompte J 2010 Biol. Conserv. 143 2270
[4] Suggitt A J, Wilson R J, Isaac N J, et al. 2018 Nat. Clim. Change 8 713
[5] Hertzog L R, Boonyarittichaikij R, Dekeukeleire D, et al. 2019 Ecology 100 e02653
[6] Bartley T J, McCann K S, Bieg C, Cazelles K, Granados M, Guzzo M M, MacDougall A S, Tunney T D and McMeans B C 2019 Nat. Ecol. Evolut. 3 345
[7] Lenton T M, Rockstrm J, Gaffney O, Rahmstorf S and Schellnhuber H J 2019 Nature 575 592
[8] Dakos V, Matthews B, Hendry A P, Levine J, Loeuille N, Norberg J, Nosil P, Scheffer M and De Meester L 2019 Nat. Ecol. Evolut. 3 355
[9] Reyer C P, Brouwers N, Rammig A, et al. 2015 J. Ecol. 103 5
[10] Sampaio G, Nobre C, Costa M H, Satyamurty P, Soares Filho B S and Cardoso M 2007 Geophys.l Res. Lett. 34
[11] Hirota M, Holmgren M, Van Nes E H and Scheffer M 2011 Science 334 232
[12] Lovejoy T E and Nobre C 2018 Sci. Adv. 4 eaat2340
[13] Chen A, Sanchez A, Dai L and Gore J 2014 Nat. Commun. 5 3713
[14] Dakos V, Matthews B, Hendry A P, Levine J, Loeuille N, Norberg J, Nosil P, Scheffer M and De Meester L 2019 Nat. Ecol. Evolut. 3 355
[15] Moore J C 2018 Proc. Natl. Acad. Sci. USA 115 635
[16] Kong Y X, Shi G Y, Wu R J and Zhang Y C 2019 Phys. Rep. 832 1
[17] García-Algarra J, Pastor J M, Iriondo J M and Galeano J 2017 PeerJ 5 e3321
[18] Baxter G, Dorogovtsev S, Lee K E, Mendes J and Goltsev A 2015 Phys. Rev. X 5 031017
[19] García-Algarra J, Pastor J M, Iriondo J M and Galeano J 2017 PeerJ 5 e3321
[20] Garcia Algarra J, Pastor J M, Mouronte M L and Galeano J 2018 Complexity 2018 6204947
[21] Morone F, Del Ferraro G and Makse H A 2019 Nat. Phys. 15 95
[22] Gao J, Barzel B and Barábasi A L 2016 Nature 530 307
[23] Jiang J, Huang Z G, Seager T P, Lin W, Grebogi C, Hastings A and Lai Y C 2018 Proc. Natl. Acad. Sci. USA 115 E639
[24] Duan D, Wu C and Si S 2022 Physica A 587 126515
[25] Duan D, Wu C, Zhai Y, Lv C and Wang N 2022 Chaos Solitons Fract. 159 112077
[26] Laurence E, Doyon N, Dubé L J and Desrosiers P 2019 Phys. Rev. X 9 011042
[27] Okuyama T and Holland J N 2008 Ecol. Lett. 11 208
[28] Mougi A and Kondoh M 2012 Science 337 349
[29] Duan D, Wu X and Si S 2021 Front. Engin. Manag. 8 572
[30] Lyapunov A M 1992 Int. J. Control 55 531
[31] Arroyo M T K, Armesto J J and Primack R B 1985 Plant Syst. Evolut. 149 187
[32] Dupont Y L, Hansen D M and Olesen J M 2003 Ecography 26 301
[33] Fortuna M A, Ortega R and Bascompte J 2014 arXiv:1403.2575 [qbio.PE]
[34] Olesen J M, Eskildsen L I and Venkatasamy S 2002 Diversity Distribut. 8 181
[35] Ramirez N and Brito Y 1992 Botanical J. Linnean Soc. 110 277
[36] Ramirez N 1989 Biotropica 21 319
[37] Small E 1976 Can. Field-Natural. 90 22
[38] Hung K L J, Kingston J M, Albrecht M, Holway D A and Kohn J R 2018 Proc. R. Soc. B 285 20172140
[39] Trøjelsgaard K and Olesen J M 2013 Global Ecol. Biogeography 22 149
[40] Gracia Lázaro C, Hernández L, Borge-Holthoefer J and Moreno Y 2018 Sci. Rep. 8 9253
[41] Holland J N, DeAngelis D L and Bronstein J L 2002 Am. Natural. 159 231
[42] Thébault E and Fontaine C 2010 Science 329 853
[43] Bregman T P, Lees A C, Seddon N, MacGregor H E, Darski B, Aleixo A, Bonsall M B and Tobias J A 2015 Ecology 96 2692
[44] Traill L W, Lim M L, Sodhi N S and Bradshaw C J 2010 J. Animal Ecol. 79 937
[45] Scheffer M, Bascompte J, Brock W A, Brovkin V, Carpenter S R, Dakos V, Held H, Van Nes E H, Rietkerk M and Sugihara G 2009 Nature 461 53
[46] Veraart A J, Faassen E J, Dakos V, van Nes E H, Lürling M and Scheffer M 2012 Nature 481 357
[1] Identifying influential spreaders in complex networks based on density entropy and community structure
Zhan Su(苏湛), Lei Chen(陈磊), Jun Ai(艾均), Yu-Yu Zheng(郑雨语), and Na Bie(别娜). Chin. Phys. B, 2024, 33(5): 058901.
[2] A multilayer network diffusion-based model for reviewer recommendation
Yiwei Huang(黄羿炜), Shuqi Xu(徐舒琪), Shimin Cai(蔡世民), and Linyuan Lü(吕琳媛). Chin. Phys. B, 2024, 33(3): 038901.
[3] Source localization in signed networks with effective distance
Zhi-Wei Ma(马志伟), Lei Sun(孙蕾), Zhi-Guo Ding(丁智国), Yi-Zhen Huang(黄宜真), and Zhao-Long Hu(胡兆龙). Chin. Phys. B, 2024, 33(2): 028902.
[4] Important edge identification in complex networks based on local and global features
Jia-Hui Song(宋家辉). Chin. Phys. B, 2023, 32(9): 098901.
[5] Self-similarity of complex networks under centrality-based node removal strategy
Dan Chen(陈单), Defu Cai(蔡德福), and Housheng Su(苏厚胜). Chin. Phys. B, 2023, 32(9): 098903.
[6] Stability and multistability of synchronization in networks of coupled phase oscillators
Yun Zhai(翟云), Xuan Wang(王璇), Jinghua Xiao(肖井华), and Zhigang Zheng(郑志刚). Chin. Phys. B, 2023, 32(6): 060503.
[7] Identification of key recovering node for spatial networks
Zijian Yan(严子健), Yongxiang Xia(夏永祥), Lijun Guo(郭丽君), Lingzhe Zhu(祝令哲), Yuanyuan Liang(梁圆圆), and Haicheng Tu(涂海程). Chin. Phys. B, 2023, 32(6): 068901.
[8] AG-GATCN: A novel method for predicting essential proteins
Peishi Yang(杨培实), Pengli Lu(卢鹏丽), and Teng Zhang(张腾). Chin. Phys. B, 2023, 32(5): 058902.
[9] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[10] SLGC: Identifying influential nodes in complex networks from the perspectives of self-centrality, local centrality, and global centrality
Da Ai(艾达), Xin-Long Liu(刘鑫龙), Wen-Zhe Kang(康文哲), Lin-Na Li(李琳娜), Shao-Qing Lü(吕少卿), and Ying Liu(刘颖). Chin. Phys. B, 2023, 32(11): 118902.
[11] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[12] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[13] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[14] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[15] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
No Suggested Reading articles found!