Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(2): 028901    DOI: 10.1088/1674-1056/ad9a9b
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Node ranking based on graph curvature and PageRank

Hongbo Qu(曲鸿博)1, Yu-Rong Song(宋玉蓉)2†, Ruqi Li(李汝琦)1, Min Li(李敏)2, and Guo-Ping Jiang(蒋国平)2
1 School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 College of Automation & College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Abstract  Identifying key nodes in complex networks is crucial for understanding and controlling their dynamics. Traditional centrality measures often fall short in capturing the multifaceted roles of nodes within these networks. The PageRank algorithm, widely recognized for ranking web pages, offers a more nuanced approach by considering the importance of connected nodes. However, existing methods generally overlook the geometric properties of networks, which can provide additional insights into their structure and functionality. In this paper, we propose a novel method named Curv-PageRank (C-PR), which integrates network curvature and PageRank to identify influential nodes in complex networks. By leveraging the geometric insights provided by curvature alongside structural properties, C-PR offers a more comprehensive measure of a node’s influence. Our approach is particularly effective in networks with community structures, where it excels at pinpointing bridge nodes critical for maintaining connectivity and facilitating information flow. We validate the effectiveness of C-PR through extensive experiments. The results demonstrate that C-PR outperforms traditional centrality-based and PageRank methods in identifying critical nodes. Our findings offer fresh insights into the structural importance of nodes across diverse network configurations, highlighting the potential of incorporating geometric properties into network analysis.
Keywords:  important nodes      graph curvature      complex networks      network geometry  
Received:  30 September 2024      Revised:  16 November 2024      Accepted manuscript online:  05 December 2024
PACS:  89.75.-k (Complex systems)  
  89.75.Fb (Structures and organization in complex systems)  
  02.40.-k (Geometry, differential geometry, and topology)  
Fund: Project partially supported by the National Natural Science Foundation of China (Grant Nos. 61672298 and 62373197), the Major Project of Philosophy and Social Science Research in Colleges and Universities in Jiangsu Province, China (Grant No. 2018SJZDI142), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX23_1045).
Corresponding Authors:  Yu-Rong Song     E-mail:  songyr@njupt.edu.cn

Cite this article: 

Hongbo Qu(曲鸿博), Yu-Rong Song(宋玉蓉), Ruqi Li(李汝琦), Min Li(李敏), and Guo-Ping Jiang(蒋国平) Node ranking based on graph curvature and PageRank 2025 Chin. Phys. B 34 028901

[1] Artime O, Grassia M, DeDomenico M, Gleeson J P, Makse H A, Mangioni G, Perc M and Radicchi F 2024 Nat. Rev. Phys. 6 114
[2] Liu X M, Li D Q, Ma M Q, Szymanski B K, Stanley H E and Gao J X 2022 Phys. Rep. 971 1
[3] Watts D J and Strogatz S H 1998 Nature 393 440
[4] Newman M E 2002 Phys. Rev. E 66 016128
[5] Albert R, Albert I and Nakarado G L 2004 Phys. Rev. E 69 025103
[6] Bonacich P 1972 J. Math. Sociol. 2 113
[7] Brandes U 2001 J. Math. Sociol. 25 163
[8] Freeman L C, et al. 2002 Soc. Netw. 1 215
[9] Page L, Brin S, Motwani R and Winograd T Tech. Rep. 1999 66
[10] Lu L Y, Zhang Y C, Yeung C H and Zhou T 2011 PLoS One 6 e21202
[11] Boguna M, Bonamassa I, DeDomenico M, Havlin S, Krioukov D and Serrano M A 2021 Nat. Rev. Phys. 3 114
[12] Mulder D and Bianconi G 2018 J. Stat. Phys. 173 783
[13] Lin Y, Lu L Y and Yau S T 2011 Tohoku Math. J. 63 605
[14] Ollivier Y 2009 J. Funct. Anal. 256 810
[15] DoCarmo M P and FlahertyFrancis J 1992 Riemannian geometry (Boston:Birkhauser) p. 10
[16] Ollivier Y 2010 Adv. Stud. Pure Math. 57 343
[17] Wandelt S, Shi X, Sun X Q and Zanin M 2020 IEEE Access 8 111954
[18] Bedi P and Sharma C 2016 Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 6 115
[19] Barrio-Hernandez I, Schwartzentruber J, Shrivastava A, Del-Toro N, Gonzalez A, Zhang Q, Mountjoy E, Suveges D, Ochoa D, Ghoussaini M, Bradley G, Hermjakob H, Orchard S, Dunham I, Anderson C, Porras P and Beltrao P 2023 Nat. Genet. 55 389
[20] Heidemann J, Klier M and Probst F 2010 Proceedings of the International Conference on Information Systems, December 12-15, 2010, St. Louis, Missouri, USA, p. 79
[21] Nguyen P, Tomeo P, DiNoia T and DiSciascio E 2015 Proceedingsof the 24th International Conference on World Wide Web, May 18-22, 2015, Florence, Italy, p. 1477
[22] Morrison J L, Breitling R, Higham D J and Gilbert D R 2005 BMC Bioinformatics 6 233
[23] Monge G 1781 Mem. Math. Phys. Acad. Royale Sci. 1 666
[24] Galichon A 2018 Optimal transport methods in economics (Princeton: Princeton University Press) p.96
[25] Peyre G and Cuturi M 2019 Found. Trends Mach. Learn. 11 355
[26] Carmi S, Havlin S, Kirkpatrick S, Shavitt Y and Shir E 2007 Proc. Natl. Acad. Sci. USA 104 11150
[27] Fan C J, Zeng L, Sun Y Z and Liu Y Y 2020 Nat. Mach. Intell. 2 317
[28] Barabasi A L and Albert R 1999 Science 286 509
[29] Lancichinetti A, Fortunato S and Radicchi F 2008 Phys. Rev. E 78 046110
[30] Watts D J 1999 Am. J. Sociol. 105 493
[31] Zachary W W 1977 J. Anthropol. Res. 33 452
[32] Lusseau D and Newman M E 2004 Proc. R. Soc. Lond. B Biol. Sci. 271 S477
[33] Leskovec J and Sosic R 2016 ACM Trans. Intell. Syst. Technol. 8 1
[34] Yang Z L, Cohen W and Salakhudinov R 2016 Proceedings of the 33rd International Conference on Machine Learning, June 19-24, New York, USA, p. 40
[35] Boguna M, Pastor-Satorras R, Díaz-Guilera A and Arenas A 2004 Phys. Rev. E 70 056122
[36] Clauset A, Newman M E and Moore C 2004 Phys. Rev. E 70 066111
[37] Cordasco G and Gargano L 2010 Proceedings of the IEEE International Workshop on Business Applications of Social Network Analysis, December 15, 2010, Bangalore, India, p. 1
[38] Pastor-Satorras R and Vespignani A 2001 Phys. Rev. Lett. 86 3200
[39] Rossi R A and Ahmed N K 2015 Proceedings of the AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas USA, p. 4292
[1] Dynamic analysis of major public health emergency transmission considering the dual-layer coupling of community-resident complex networks
Peng Yang(杨鹏), Ruguo Fan(范如国), Yibo Wang(王奕博), and Yingqing Zhang(张应青). Chin. Phys. B, 2024, 33(7): 070206.
[2] Identifying influential spreaders in complex networks based on density entropy and community structure
Zhan Su(苏湛), Lei Chen(陈磊), Jun Ai(艾均), Yu-Yu Zheng(郑雨语), and Na Bie(别娜). Chin. Phys. B, 2024, 33(5): 058901.
[3] Prediction of collapse process and tipping points for mutualistic and competitive networks with k-core method
Dongli Duan(段东立), Feifei Bi(毕菲菲), Sifan Li(李思凡), Chengxing Wu(吴成星), Changchun Lv(吕长春), and Zhiqiang Cai(蔡志强). Chin. Phys. B, 2024, 33(5): 050201.
[4] Effects of individual heterogeneity on social contagions
Fu-Zhong Nian(年福忠) and Yu Yang(杨宇). Chin. Phys. B, 2024, 33(5): 058705.
[5] A multilayer network diffusion-based model for reviewer recommendation
Yiwei Huang(黄羿炜), Shuqi Xu(徐舒琪), Shimin Cai(蔡世民), and Linyuan Lü(吕琳媛). Chin. Phys. B, 2024, 33(3): 038901.
[6] Source localization in signed networks with effective distance
Zhi-Wei Ma(马志伟), Lei Sun(孙蕾), Zhi-Guo Ding(丁智国), Yi-Zhen Huang(黄宜真), and Zhao-Long Hu(胡兆龙). Chin. Phys. B, 2024, 33(2): 028902.
[7] Identify information sources with different start times in complex networks based on sparse observers
Yuan-Zhang Deng(邓元璋), Zhao-Long Hu(胡兆龙), Feilong Lin(林飞龙), Chang-Bing Tang(唐长兵), Hui Wang(王晖), and Yi-Zhen Huang(黄宜真). Chin. Phys. B, 2024, 33(11): 118901.
[8] Important edge identification in complex networks based on local and global features
Jia-Hui Song(宋家辉). Chin. Phys. B, 2023, 32(9): 098901.
[9] Self-similarity of complex networks under centrality-based node removal strategy
Dan Chen(陈单), Defu Cai(蔡德福), and Housheng Su(苏厚胜). Chin. Phys. B, 2023, 32(9): 098903.
[10] Stability and multistability of synchronization in networks of coupled phase oscillators
Yun Zhai(翟云), Xuan Wang(王璇), Jinghua Xiao(肖井华), and Zhigang Zheng(郑志刚). Chin. Phys. B, 2023, 32(6): 060503.
[11] Identification of key recovering node for spatial networks
Zijian Yan(严子健), Yongxiang Xia(夏永祥), Lijun Guo(郭丽君), Lingzhe Zhu(祝令哲), Yuanyuan Liang(梁圆圆), and Haicheng Tu(涂海程). Chin. Phys. B, 2023, 32(6): 068901.
[12] AG-GATCN: A novel method for predicting essential proteins
Peishi Yang(杨培实), Pengli Lu(卢鹏丽), and Teng Zhang(张腾). Chin. Phys. B, 2023, 32(5): 058902.
[13] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[14] SLGC: Identifying influential nodes in complex networks from the perspectives of self-centrality, local centrality, and global centrality
Da Ai(艾达), Xin-Long Liu(刘鑫龙), Wen-Zhe Kang(康文哲), Lin-Na Li(李琳娜), Shao-Qing Lü(吕少卿), and Ying Liu(刘颖). Chin. Phys. B, 2023, 32(11): 118902.
[15] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
No Suggested Reading articles found!