Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 088903    DOI: 10.1088/1674-1056/ad4cd4
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

Detecting the core of a network by the centralities of the nodes

Peijie Ma(马佩杰), Xuezao Ren(任学藻)†, Junfang Zhu(朱军芳)‡, and Yanqun Jiang(蒋艳群)
School of Mathematics and Science, Southwest University of Science and Technology, Mianyang 621010, China
Abstract  Many networks exhibit the core/periphery structure. Core/periphery structure is a type of meso-scale structure that consists of densely connected core nodes and sparsely connected peripheral nodes. Core nodes tend to be well-connected, both among themselves and to peripheral nodes, which tend not to be well-connected to other nodes. In this brief report, we propose a new method to detect the core of a network by the centrality of each node. It is discovered that such nodes with non-negative centralities often consist in the core of the networks. The simulation is carried out on different real networks. The results are checked by the objective function. The checked results may show the effectiveness of the simulation results by the centralities of the nodes on the real networks. Furthermore, we discuss the characters of networks with the single core/periphery structure and point out the scope of the application of our method at the end of this paper.
Keywords:  complex network      core/periphery structure      the objective function  
Received:  23 January 2024      Revised:  15 April 2024      Accepted manuscript online: 
PACS:  89.75.Hc (Networks and genealogical trees)  
Fund: Project supported by the National Natural Science Foundation of China (Gant No. 11872323).
Corresponding Authors:  Xuezao Ren, Junfang Zhu     E-mail:  rxz63@aliyun.com;zjfbird@mail.ustc.edu.cn

Cite this article: 

Peijie Ma(马佩杰), Xuezao Ren(任学藻), Junfang Zhu(朱军芳), and Yanqun Jiang(蒋艳群) Detecting the core of a network by the centralities of the nodes 2024 Chin. Phys. B 33 088903

[1] Csermely P, London A, Wu L Y and Uzzi B 2013 Journal of Complex Networks 1 93
[2] Borgatti S P and Everett M G 1999 Social Networks 21 375
[3] Holme P 2005 Phys. Rev. E 72 046111
[4] Da Silva M R, Ma H and Zeng A P 2008 Proc. IEEE 96 1411
[5] Ma C, Yang X L, Chen H S and Zhang H F 2021 Acta Phys. Sin. 70 228901 (in Chinese)
[6] Liu Y Y, Slotine J J and Barabási A L 2011 Nature 473 167
[7] Rombach M P, Porter M A, Fowler J H and Mucha P J 2014 SIAM Journal on Applied Mathematics 74 167
[8] Della Rossa F, Dercole F and Piccardi C 2013 Scientific Reports 3 1467
[9] Shen X, Han Y, Li W Q, Wong K C and Peng C B 2021 Physica A 581 126224
[10] Colizza V, Flammini A, Serrano M A and Vespignani A 2006 Nature 2 110
[11] Xu X K, Zhang J and Small M 2010 Phys. Rev. E 82 046117
[12] Khanday A M U D, Wani M A, Rabani S T and Khan Q R 2023 Sustainability 15 1249
[13] Polanco A and Newman M E J 2023 Phys. Rev. E 108 024311
[14] Towlson E K, Vértes P E, Ahnert S E, Schafer W R and Bullmore E T 2013 The Journal of Neuroscience 33 6380
[15] Mondragón R J 2014 Journal of Complex Networks 2 288
[16] Yan J, Anghinoni L, Zhu Y T, Liu W, Li G, Zheng Q and Zhao L 2023 Journal of Computational Science 66 101912
[17] Masuda N and Konno N 2006 Social Networks 28 297
[18] Ball G, Aljabar P, Zebari S, Tusor N, Arichi T, Merchant N, Robinson E, Ogundipe E, Rueckert D, Edwards A and Counsell S 2014 Proc. Natl. Acad. Sci. USA 111 7456
[19] Grayson D S, Ray S, Carpenter S, Iyer S, Dias T G C, Stevens C, Nigg J T and Fair D A 2014 PloS One 9 e88297
[20] Lee S H, Cucuringu M and Porter M A 2014 Phys. Rev. E 89 032810
[21] Shen X, Aliko S, Han Y, Skipper J I and Peng C 2021 IEEE Transactions on Network Science and Engineering 9 875
[22] Ai D, Liu X L, Kang W Z, Li L N, Lü S Q and Liu Y 2023 Chin. Phys. B 32 118902
[23] Chen D, Cai D and Su H 2023 Chin. Phys. B 32 098903
[24] Zachary W W 1977 Journal of anthropological research 33 452
[25] Cucringu M, Rombach P, Lee S H and Porter M A 2016 European Journal of Applied Mathematics 27 846
[26] van Lidth de Jeude J, Caldarelli G and Squartini T 2019 Europhysics Letters 125 68001
[27] Kojaku S and Masuda N 2017 Phys. Rev. E 96 052313
[28] Lusseau D 2003 Proc. R. Soc. Lond. B 270 186
[29] Newman M E J 2006 Phys. Rev. E 74 036104
[30] Adamic L A and Glance N 2005 Proceedings of the 3rd International Workshop on Link Discovery, August 21, 2005, New York, USA, p. 36
[31] Xiang B B, Bao Z K, Ma C, Zhang X, Chen H S and Zhang H F 2018 Chaos 28 013122
[32] Girvan M and Newman M E J 2002 Proc. Natl. Acad. Sci. USA 99 7821
[1] Dynamic analysis of major public health emergency transmission considering the dual-layer coupling of community-resident complex networks
Peng Yang(杨鹏), Ruguo Fan(范如国), Yibo Wang(王奕博), and Yingqing Zhang(张应青). Chin. Phys. B, 2024, 33(7): 070206.
[2] Identifying influential spreaders in complex networks based on density entropy and community structure
Zhan Su(苏湛), Lei Chen(陈磊), Jun Ai(艾均), Yu-Yu Zheng(郑雨语), and Na Bie(别娜). Chin. Phys. B, 2024, 33(5): 058901.
[3] Effects of individual heterogeneity on social contagions
Fu-Zhong Nian(年福忠) and Yu Yang(杨宇). Chin. Phys. B, 2024, 33(5): 058705.
[4] Prediction of collapse process and tipping points for mutualistic and competitive networks with k-core method
Dongli Duan(段东立), Feifei Bi(毕菲菲), Sifan Li(李思凡), Chengxing Wu(吴成星), Changchun Lv(吕长春), and Zhiqiang Cai(蔡志强). Chin. Phys. B, 2024, 33(5): 050201.
[5] Impact of different interaction behavior on epidemic spreading in time-dependent social networks
Shuai Huang(黄帅), Jie Chen(陈杰), Meng-Yu Li(李梦玉),Yuan-Hao Xu(徐元昊), and Mao-Bin Hu(胡茂彬). Chin. Phys. B, 2024, 33(3): 030205.
[6] A multilayer network diffusion-based model for reviewer recommendation
Yiwei Huang(黄羿炜), Shuqi Xu(徐舒琪), Shimin Cai(蔡世民), and Linyuan Lü(吕琳媛). Chin. Phys. B, 2024, 33(3): 038901.
[7] Source localization in signed networks with effective distance
Zhi-Wei Ma(马志伟), Lei Sun(孙蕾), Zhi-Guo Ding(丁智国), Yi-Zhen Huang(黄宜真), and Zhao-Long Hu(胡兆龙). Chin. Phys. B, 2024, 33(2): 028902.
[8] Self-similarity of complex networks under centrality-based node removal strategy
Dan Chen(陈单), Defu Cai(蔡德福), and Housheng Su(苏厚胜). Chin. Phys. B, 2023, 32(9): 098903.
[9] Important edge identification in complex networks based on local and global features
Jia-Hui Song(宋家辉). Chin. Phys. B, 2023, 32(9): 098901.
[10] Stability and multistability of synchronization in networks of coupled phase oscillators
Yun Zhai(翟云), Xuan Wang(王璇), Jinghua Xiao(肖井华), and Zhigang Zheng(郑志刚). Chin. Phys. B, 2023, 32(6): 060503.
[11] Identification of key recovering node for spatial networks
Zijian Yan(严子健), Yongxiang Xia(夏永祥), Lijun Guo(郭丽君), Lingzhe Zhu(祝令哲), Yuanyuan Liang(梁圆圆), and Haicheng Tu(涂海程). Chin. Phys. B, 2023, 32(6): 068901.
[12] Synchronization of stochastic complex networks with time-delayed coupling
Duolan(朵兰), Linying Xiang(项林英), and Guanrong Chen(陈关荣). Chin. Phys. B, 2023, 32(6): 060502.
[13] AG-GATCN: A novel method for predicting essential proteins
Peishi Yang(杨培实), Pengli Lu(卢鹏丽), and Teng Zhang(张腾). Chin. Phys. B, 2023, 32(5): 058902.
[14] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[15] SLGC: Identifying influential nodes in complex networks from the perspectives of self-centrality, local centrality, and global centrality
Da Ai(艾达), Xin-Long Liu(刘鑫龙), Wen-Zhe Kang(康文哲), Lin-Na Li(李琳娜), Shao-Qing Lü(吕少卿), and Ying Liu(刘颖). Chin. Phys. B, 2023, 32(11): 118902.
No Suggested Reading articles found!