Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(3): 030204    DOI: 10.1088/1674-1056/adb67c
Special Issue: SPECIAL TOPIC — Computational programs in complex systems
SPECIAL TOPIC — Computational programs in complex systems Prev   Next  

GPIC: A GPU-based parallel independent cascade algorithm in complex networks

Chang Su(苏畅)1, Xu Na(那旭)1, Fang Zhou(周方)2, and Linyuan Lü(吕琳媛)3,†
1 Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China;
2 Hangzhou Innovation Institute of Beihang University, Hangzhou 310000, China;
3 School of Cyber Science and Technology, University of Science and Technology of China, Hefei 230026, China
Abstract  Independent cascade (IC) models, by simulating how one node can activate another, are important tools for studying the dynamics of information spreading in complex networks. However, traditional algorithms for the IC model implementation face significant efficiency bottlenecks when dealing with large-scale networks and multi-round simulations. To settle this problem, this study introduces a GPU-based parallel independent cascade (GPIC) algorithm, featuring an optimized representation of the network data structure and parallel task scheduling strategies. Specifically, for this GPIC algorithm, we propose a network data structure tailored for GPU processing, thereby enhancing the computational efficiency and the scalability of the IC model. In addition, we design a parallel framework that utilizes the full potential of GPU's parallel processing capabilities, thereby augmenting the computational efficiency. The results from our simulation experiments demonstrate that GPIC not only preserves accuracy but also significantly boosts efficiency, achieving a speedup factor of 129 when compared to the baseline IC method. Our experiments also reveal that when using GPIC for the independent cascade simulation, 100-200 simulation rounds are sufficient for higher-cost studies, while high precision studies benefit from 500 rounds to ensure reliable results, providing empirical guidance for applying this new algorithm to practical research.
Keywords:  complex networks      information spreading      independent cascade model      parallel computing      GPU  
Received:  27 November 2024      Revised:  10 February 2025      Accepted manuscript online:  15 February 2025
PACS:  02.70.-c (Computational techniques; simulations)  
  64.60.aq (Networks)  
  89.20.Ff (Computer science and technology)  
Fund: The author acknowledges support from the National Natural Science Foundation of China (Grant No. T2293771), the STI 2030-Major Projects (Grant No. 2022ZD0211400), and the Sichuan Province Outstanding Young Scientists Foundation (Grant No. 2023NSFSC1919).
Corresponding Authors:  Linyuan Lü     E-mail:  linyuan.lv@ustc.edu.cn

Cite this article: 

Chang Su(苏畅), Xu Na(那旭), Fang Zhou(周方), and Linyuan Lü(吕琳媛) GPIC: A GPU-based parallel independent cascade algorithm in complex networks 2025 Chin. Phys. B 34 030204

[1] Barabási A L 2013 Phil. Trans. R. Soc. A 371 20120375
[2] Newman M 2018 Networks (New York: Oxford University Press)
[3] Luding S 2005 Nature 435 159
[4] Goldenberg J, Libai B and Muller E 2001 Market. Lett. 12 211
[5] Goldenberg J, Libai B and Muller E 2001 Acad. Market. Sci. Rev. 9 1
[6] Chen D, Lü L, Shang M S, Zhang Y C and Zhou T 2012 Physica A 391 1777
[7] Lü L, Chen D, Ren X L, Zhang Q M, Zhang Y C and Zhou T 2016 Phys. Rep. 650 1
[8] Malliaros F D, RossiME G and Vazirgiannis M 2016 Sci. Rep. 6 19307
[9] Granovetter M S 1973 Am. J. Sociol. 78 1360
[10] Granovetter M 1983 Sociol. Theor. 1 201
[11] Lü L and Zhou T 2011 Physica A 390 1150
[12] Wiki 2024 GPU Wikipedia
[13] Krizhevsky A, Sutskever I and Hinton G E 2017 Communications of the ACM 60 84
[14] Huang Y P, Xia Y, Yang L, Wei J, Yang Y I and Gao Y Q 2022 Chin. J. Chem. 40 160
[15] Wang B,Wald I, Morrical N, UsherW, Mu L, Thompson K and Hughes R 2022 Comput. Phys. Commun. 271 108221
[16] Zhang Y H, Zhu H Z, Dong Y J, Zeng J, Han X P, Bratchenko I A, Zhang F R, Xu S Y and Wang S 2023 Chin. Phys. B 32 118702
[17] Zhang B D, Tang Y H, Wu J J and Li X 2011 Chin. Phys. B 20 098901
[18] Du Nguyen H A, Al-Ars Z, Smaragdos G and Strydis C 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) (Grenoble, France) p. 974
[19] Gao M, Li Z, Li R, Cui C, Chen X, Ye B, Li Y, Gu W, Gong Q, Wang X and Chen Y 2023 Patterns 4 100839
[20] Zheng Z, Shi X and Jin H 2023 IEEE Transactions on Big Data 9 677
[21] Liu X, Li M, Li S, Peng S, Liao X and Lu X 2014 IEEE Transactions on Parallel and Distributed Systems 25 136
[22] Zou P, Lü Y s,Wu L d, Chen L l and Yao Y p 2013 Simulation 89 1154
[23] Barabási A L and Albert R 1999 Science 286 509
[24] Erdős P and Rényi A 1960 Publ. Math. Inst. Hung. Acad. Sci. 5 17
[25] Eggemann N and Noble S D 2011 Discrete Appl. Math. 159 953
[26] Watts D J and Strogatz S H 1998 Nature 393 440
[27] Liu J G, Lin J H, Guo Q and Zhou T 2016 Sci. Rep. 6 21380
[28] Kempe D, Kleinberg J and Tardos É 2003 Proceedings of the ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Washington, D.C, USA) p. 137
[29] Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E and Makse H A 2010 Nat. Phys. 6 888
[30] Iannelli F, Mariani M S and Sokolov I M 2018 Phys. Rev. E 98 062302
[31] Awerbuch B, Goldberg A V, LubyMand Plotkin S A 1989 30th Annual Symposium on Foundations of Computer Science (Research Triangle Park, NC, USA) p. 364
[32] Ren X L, Gleinig N, Helbing D and Antulov-Fantulin N 2019 Proc. Natl. Acad. Sci. USA 116 6554
[33] Jajodia S, Noel S and O’berry B 2005 Topological analysis of network attack vulnerability (Boston, MA: Springer)
[34] Katz E and Lazarsfeld P F 1955 Personal influence: The part played by people in the flow of mass communications (New York: Routledge)
[35] Watts D J and Dodds P S 2007 J. Consum. Res. 34 441
[36] Leskovec J, Kleinberg J and Faloutsos C 2007 ACM Trans. Knowl. Discov. Data 1 2
[37] Leskovec J, Lang K J, Dasgupta A and Mahoney M W 2009 Internet Mathematics 6 29
[38] Yang J and Leskovec J 2012 IEEE 12th International Conference on Data Mining (Brussels, Belgium) p. 745
[39] Yang P L, Zhao L J, Dong C, Xu G Q and Zhou L X 2023 Chin. Phys. B 32 058901
[40] Keeling M J and Rohani P 2008 Modeling Infectious Diseases in Humans and Animals (Princeton: Princeton University Press)
[41] Liu S, Perra N, Karsai M and Vespignani A 2014 Phys. Rev. Lett. 112 118702
[42] Pastor-Satorras R, Castellano C, Van Mieghem P and Vespignani A 2015 Rev. Mod. Phys. 87 925
[1] Explosive information spreading in higher-order networks: Effect of social reinforcement
Yu Zhou(周宇), Yingpeng Liu(刘英鹏), Liang Yuan(袁亮), Youhao Zhuo(卓友濠), Kesheng Xu(徐克生), Jiao Wu(吴娇), and Muhua Zheng(郑木华). Chin. Phys. B, 2025, 34(3): 038704.
[2] Node ranking based on graph curvature and PageRank
Hongbo Qu(曲鸿博), Yu-Rong Song(宋玉蓉), Ruqi Li(李汝琦), Min Li(李敏), and Guo-Ping Jiang(蒋国平). Chin. Phys. B, 2025, 34(2): 028901.
[3] Dynamic analysis of major public health emergency transmission considering the dual-layer coupling of community-resident complex networks
Peng Yang(杨鹏), Ruguo Fan(范如国), Yibo Wang(王奕博), and Yingqing Zhang(张应青). Chin. Phys. B, 2024, 33(7): 070206.
[4] Identifying influential spreaders in complex networks based on density entropy and community structure
Zhan Su(苏湛), Lei Chen(陈磊), Jun Ai(艾均), Yu-Yu Zheng(郑雨语), and Na Bie(别娜). Chin. Phys. B, 2024, 33(5): 058901.
[5] Effects of individual heterogeneity on social contagions
Fu-Zhong Nian(年福忠) and Yu Yang(杨宇). Chin. Phys. B, 2024, 33(5): 058705.
[6] Prediction of collapse process and tipping points for mutualistic and competitive networks with k-core method
Dongli Duan(段东立), Feifei Bi(毕菲菲), Sifan Li(李思凡), Chengxing Wu(吴成星), Changchun Lv(吕长春), and Zhiqiang Cai(蔡志强). Chin. Phys. B, 2024, 33(5): 050201.
[7] A multilayer network diffusion-based model for reviewer recommendation
Yiwei Huang(黄羿炜), Shuqi Xu(徐舒琪), Shimin Cai(蔡世民), and Linyuan Lü(吕琳媛). Chin. Phys. B, 2024, 33(3): 038901.
[8] Source localization in signed networks with effective distance
Zhi-Wei Ma(马志伟), Lei Sun(孙蕾), Zhi-Guo Ding(丁智国), Yi-Zhen Huang(黄宜真), and Zhao-Long Hu(胡兆龙). Chin. Phys. B, 2024, 33(2): 028902.
[9] Identify information sources with different start times in complex networks based on sparse observers
Yuan-Zhang Deng(邓元璋), Zhao-Long Hu(胡兆龙), Feilong Lin(林飞龙), Chang-Bing Tang(唐长兵), Hui Wang(王晖), and Yi-Zhen Huang(黄宜真). Chin. Phys. B, 2024, 33(11): 118901.
[10] Important edge identification in complex networks based on local and global features
Jia-Hui Song(宋家辉). Chin. Phys. B, 2023, 32(9): 098901.
[11] Self-similarity of complex networks under centrality-based node removal strategy
Dan Chen(陈单), Defu Cai(蔡德福), and Housheng Su(苏厚胜). Chin. Phys. B, 2023, 32(9): 098903.
[12] GPU parallel computation of dendrite growth competition in forced convection using the multi-phase-field-lattice Boltzmann model
Zi-Hao Gao(高梓豪), Chang-Sheng Zhu(朱昶胜), and Cang-Long Wang(王苍龙). Chin. Phys. B, 2023, 32(7): 078101.
[13] Stability and multistability of synchronization in networks of coupled phase oscillators
Yun Zhai(翟云), Xuan Wang(王璇), Jinghua Xiao(肖井华), and Zhigang Zheng(郑志刚). Chin. Phys. B, 2023, 32(6): 060503.
[14] Identification of key recovering node for spatial networks
Zijian Yan(严子健), Yongxiang Xia(夏永祥), Lijun Guo(郭丽君), Lingzhe Zhu(祝令哲), Yuanyuan Liang(梁圆圆), and Haicheng Tu(涂海程). Chin. Phys. B, 2023, 32(6): 068901.
[15] AG-GATCN: A novel method for predicting essential proteins
Peishi Yang(杨培实), Pengli Lu(卢鹏丽), and Teng Zhang(张腾). Chin. Phys. B, 2023, 32(5): 058902.
No Suggested Reading articles found!