Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 070701    DOI: 10.1088/1674-1056/adce95
Special Issue: Featured Column — INSTRUMENTATION AND MEASUREMENT
INSTRUMENTATION AND MEASUREMENT Prev   Next  

High-sensitivity spectroscopic measurements under pulsed high magnetic field

Zheng Wang(王政)1, Yichun Pan(潘议淳)1, Guangran Yang(杨光冉)1, Wei Xie(谢微)2, and Weihang Zhou(周伟航)1,†
1 Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China;
2 State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
Abstract  Pulsed magnet technology is the only way to generate ultra-strong magnetic fields higher than 45 T so far. However, the inherently fast-changing field strength (typically on the order of 1000 T/s) poses significant challenges for spectroscopic measurements which rely on time integration of signals to improve spectral qualities. In this work, we report high-sensitivity spectroscopic measurements under pulsed high magnetic fields employing the long flat-top pulsed magnetic field technique. By means of a multiple-capacitor power supply, we were able to generate pulsed high magnetic fields with controllable flat-top pulse width and field stabilities. By synchronizing spectroscopic measurements with the waveform of the flat-top magnetic field, the integration time of each spectrum can be increased by up to 100 times compared with that of the conventional spectroscopic measurements under pulsed magnetic fields, thus enabling high-sensitivity spectroscopic measurements under ultra-strong pulsed magnetic fields. These findings promise an efficient way to significantly improve the performance and extend the application of optical measurements under pulsed high magnetic fields.
Keywords:  pulsed magnet      flat-top pulsed magnetic field      optical spectroscopy      photoluminescence  
Received:  20 January 2025      Revised:  09 April 2025      Accepted manuscript online:  21 April 2025
PACS:  07.57.Pt (Submillimeter wave, microwave and radiowave spectrometers; magnetic resonance spectrometers, auxiliary equipment, and techniques)  
  07.55.-w (Magnetic instruments and components)  
  07.55.Db (Generation of magnetic fields; magnets)  
Fund: This work was financially supported by the National Key Research and Development Program of China (Grant No. 2022YFA1602700) and the National Natural Science Foundation of China (Grant No. 12274159).
Corresponding Authors:  Weihang Zhou     E-mail:  zhouweihang@hust.edu.cn

Cite this article: 

Zheng Wang(王政), Yichun Pan(潘议淳), Guangran Yang(杨光冉), Wei Xie(谢微), and Weihang Zhou(周伟航) High-sensitivity spectroscopic measurements under pulsed high magnetic field 2025 Chin. Phys. B 34 070701

[1] Miyata A, Mitioglu A, Plochocka P, Portugall O, Wang J T W, Stranks S D, Snaith H J and Nicholas R J 2015 Nat. Phys. 11 582
[2] Goryca M, Li J, Stier A V, Taniguchi T,Watanabe K, Courtade E, Shree S, Robert C, Urbaszek B, Marie X and Crooker S A 2019 Nat. Commun. 10 4172
[3] Timothy Noe Ii G, Kim J H, Lee J, Wang Y, Wójcik A K, McGill S A, Reitze D H, Belyanin A A and Kono J 2012 Nat. Phys. 8 219
[4] Zhang X X, Cao T, Lu Z, Lin Y C, Zhang F, Wang Y, Li Z, Hone J C, Robinson J A, Smirnov D, Louie S G and Heinz T F 2017 Nat. Nanotechnol. 12 883
[5] Feierabend M, Brem S, Ekman A and Malic E 2020 2D Mater. 8 015013
[6] Boekhoven J 2018 Nat. Nanotechnol. 13 979
[7] Chen Z, Zhou W, Zhang B, Yu C H, Zhu J, Lu W and Shen S C 2009 Phys. Rev. Lett. 102 244103
[8] Zhou W, Chen Z, Zhang B, Yu C H, Lu W and Shen S C 2010 Phys. Rev. Lett. 105 024101
[9] Overstreet C, Asenbaum P, Curti J, Kim M and Kasevich M A 2022 Science 375 226
[10] Vaidman L 2012 Phys. Rev. A 86 040101
[11] Caprez A, Barwick B and Batelaan H 2007 Phys. Rev. Lett. 99 210401
[12] Portugall O, Puhlmann N, Müller H U, Barczewski M, Stolpe I and Ortenberg M v 1999 J. Phys. D: Appl. Phys. 32 2354
[13] Li L, Ding H, Peng T, Han X, Xia Z, Chen J, Duan X, Wang C, Pan Y, Vanacken J and Herlach F 2008 IEEE Trans. Appl. Supercond. 18 596
[14] Liu S, Peng T, Liu X, Shang H, Wang S, Pan Z, Jin G, Li J and Li L 2024 IEEE Trans. Appl. Supercond. 34 1
[15] Peng T, Liu S B, Pan Y, Lv Y L, Ding H F, Han X T, Xiao H X, Wang S, Jiang S and Li L 2022 IEEE Trans. Appl. Supercond. 32 1
[16] Li Z Y, Gu T Y, Wei W Q, Yuan Y, Wang Z, Luo K J, Pan Y P, Xie J F, Zhang S Z, Peng T, Liu L, Chen Q, Han X T, Luo Y K and Li L 2025 Chin. Phys. B 34 049901
[17] Xie J F, Zhang S Z, Shi J T, Wang J F, Li L and Han X T 2023 High Voltage. 8 898
[18] Tay F, Baydin A, Katsutani F and Kono J 2022 J. Phys. Soc. Jpn. 91 101006
[19] WeiW, Liu Q, Yuan L, Zhang J, Liu S, Zhou R, Luo Y and Han X 2023 IEEE Trans. Instrum. Meas. 72 1
[20] Xu Y, Gao Z, Yan Z, Chen J and Zhao C 2024 IEEE Trans. Appl. Supercond. 34 1
[21] Wang S, Peng T, Jiang F, Jiang S, Chen S, Deng L, Huang R and Li L 2020 IEEE Trans. Appl. Supercond. 30 1
[22] Xiao H, Ma Y, Lv Y, Ding T, Zhang S, Hu F, Li L and Pan Y 2014 IEEE Trans. Power Electron. 29 4532
[23] Kohama Y and Kindo K 2015 Rev. Sci. Instrum. 86 104701
[24] Geng J, Zhang D, Kim I, Kim H M, Higashitarumizu N, Rahman I K M R, Lam L, Ager J W, Davydov A V, Krylyuk S and Javey A 2024 Adv. Funct. Mater. 35 2413672
[25] Nelson J, Stanev T K, Lebedev D, Lamountain T, Gish J T, Zeng H, Shin H, Heinonen O,Watanabe K, Taniguchi T, Hersam M C and Stern N P 2023 Phys. Rev. B 107 115304
[26] Brotons-Gisbert M, Andres-Penares D, Suh J, Hidalgo F, Abargues R, Rodríguez-Cantó P J, Segura A, Cros A, Tobias G, Canadell E, Ordejón P,Wu J, Martínez-Pastor J P and Sánchez-Royo J F 2016 Nano Lett. 16 3221
[27] Li C, Zhao L, Shang Q, Wang R, Bai P, Zhang J, Gao Y, Cao Q, Wei Z and Zhang Q 2022 ACS Nano 16 1477
[28] Debbichi L, Eriksson O and Lebègue S 2015 J. Phys. Chem. Lett. 6 3098
[1] Low-temperature photoluminescence study of optical centers in HPHT-diamonds
Liangchao Chen(陈良超), Xinyuan Miao(苗辛原), Zhuangfei Zhang(张壮飞), Biao Wan(万彪), Yuewen Zhang(张跃文), Qianqian Wang(王倩倩), Longsuo Guo(郭龙锁), and Chao Fang(房超). Chin. Phys. B, 2025, 34(8): 086103.
[2] Quantitative determination of modal photon number density spectrum in arbitrary dielectric structures with a quantum emitter
Li-Heng Chen(陈立恒), Fengfeng Luo(罗凤凤), and Yonggui Gao(高勇贵). Chin. Phys. B, 2025, 34(4): 044204.
[3] Pressure-promoted ligand to metal energy transfer for emission enhancement of [Tb2(BDC)3(DMF)2(H2O)2]n metal-organic framework
Yunfeng Yang(杨云峰), Kaiyan Yuan(袁开岩), Binhao Yang(杨斌豪), Qing Yang(杨青), Yixuan Wang(王艺璇), and Xinyi Yang(杨新一)§. Chin. Phys. B, 2025, 34(3): 036101.
[4] Optical signature of flat bands in topological hourglass semimetal Nb3SiTe6
Shize Cao(曹仕泽), Cuiwei Zhang(张翠伟), Yueshan Xu(徐越山), Jianzhou Zhao(赵建洲), Youguo Shi(石友国), Yun-Ze Long(龙云泽), Jianlin Luo(雒建林), and Zhi-Guo Chen(谌志国). Chin. Phys. B, 2025, 34(2): 027101.
[5] Upconversion photoluminescence of Er-doped Bi4Ti3O12 ceramics enhanced by vacancy clusters revealed by positron annihilation spectroscopy
Huiru Cheng(程慧茹), Yuhuan Li(李钰环), Ziwen Pan(潘子文), Jiandang Liu(刘建党), and Bangjiao Ye(叶邦角). Chin. Phys. B, 2024, 33(12): 126102.
[6] Crystal growth, structure and crystal field splitting and fitting of Yb:GdScO3
Jia-Hong Li(李加红), Qing-Li Zhang(张庆礼), Gui-Hua Sun(孙贵花), Jin-Yun Gao(高进云), Ren-Qin Dou(窦仁勤), Xiao-Fei Wang(王小飞), and Shou-Jun Ding(丁守军). Chin. Phys. B, 2024, 33(11): 117601.
[7] Anomalous photoluminescence enhancement and resonance charge transfer in type-II 2D lateral heterostructures
Chun-Yan Zhao(赵春艳), Sha-Sha Li(李莎莎), and Yong Yan(闫勇). Chin. Phys. B, 2023, 32(8): 087801.
[8] On the origin of carrier localization in AlInAsSb digital alloy
Wen-Guang Zhou(周文广), Dong-Wei Jiang(蒋洞微), Xiang-Jun Shang(尚向军), Dong-Hai Wu(吴东海), Fa-Ran Chang(常发冉), Jun-Kai Jiang(蒋俊锴), Nong Li(李农), Fang-Qi Lin(林芳祁), Wei-Qiang Chen(陈伟强), Hong-Yue Hao(郝宏玥), Xue-Lu Liu(刘雪璐), Ping-Heng Tan(谭平恒), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(8): 088501.
[9] Exploring plasmons weakly coupling to perovskite excitons with tunable emission by energy transfer
Guo-Dong Yan(严国栋), Zhen-Hua Zhang(张振华), Heng Guo(郭衡), Jin-Ping Chen(陈金平),Qing-Song Jiang(蒋青松), Qian-Nan Cui(崔乾楠), Zeng-Liang Shi(石增良), and Chun-Xiang Xu(徐春祥). Chin. Phys. B, 2023, 32(6): 067302.
[10] Two-photon absorption of FAPbBr3 perovskite nanocrystals
Xuanyu Zhang(张轩宇), Shuyu Xiao(肖书宇), Xiongbin Wang(王雄彬), Tingchao He(贺廷超), and Rui Chen(陈锐). Chin. Phys. B, 2023, 32(6): 064212.
[11] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[12] Temperature-dependent photoluminescence of lead-free cesium tin halide perovskite microplates
Jiayu Tan(谭佳雨), Yixuan Zhou(周译玄), De Lu(卢德), Xukun Feng(冯旭坤), Yuqi Liu(刘玉琪), Mengen Zhang(张蒙恩), Fangzhengyi Lu(卢方正一), Yuanyuan Huang(黄媛媛), and Xinlong Xu(徐新龙). Chin. Phys. B, 2023, 32(11): 117802.
[13] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[14] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[15] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
No Suggested Reading articles found!