Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 070505    DOI: 10.1088/1674-1056/adca9f
GENERAL Prev   Next  

An enhanced fingerprint template protection scheme based on four-dimensional superchaotic system and dynamic DNA coding

Baiqiang Hu(胡百强)†, Jiahui Liu(刘嘉辉), and Zhe Liu(刘喆)
School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150006, China
Abstract  With the rapid development of Internet of things technology, the efficiency of data transmission between devices has been significantly improved. However, the open network environment also poses serious security risks. This paper proposes an innovative fingerprint template protection scheme, which generates key streams through an improved four-dimensional superchaotic system (4CSCS), uses the space-filling property of Hilbert curves to achieve pixel scrambling, and introduces dynamic DNA encoding to improve encryption. Experimental results show that this scheme has a large key space $2^{528}$, encrypts image information entropy of more than 7.9970, and shows excellent performance in defending against statistical attacks and differential attacks. Compared with existing methods, this scheme has significant advantages in terms of encryption performance and security, and provides a reliable protection mechanism for fingerprint authentication systems in the Internet of things environment.
Keywords:  four-dimensional superchaotic system      fingerprint template protection      Zernike moments      image encryption  
Received:  06 February 2025      Revised:  03 April 2025      Accepted manuscript online:  09 April 2025
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Gg (Control of chaos, applications of chaos)  
Corresponding Authors:  Baiqiang Hu     E-mail:  baiqianghu@gmail.com

Cite this article: 

Baiqiang Hu(胡百强), Jiahui Liu(刘嘉辉), and Zhe Liu(刘喆) An enhanced fingerprint template protection scheme based on four-dimensional superchaotic system and dynamic DNA coding 2025 Chin. Phys. B 34 070505

[1] Sun W, Cai Z, Li Y, Liu F, Fang S and Wang G 2018 Security and Communication Networks 2018 5978636
[2] Byeon H, Seno M E, Nimma D, Ramesh J V N, Zaidi A, AlGhamdi A, Keshta I, Soni M and Shabaz M 2025 Image and Vision Computing 154 105420
[3] Gong L H and Luo H X 2023 Optics & Laser Technology 167 109665
[4] Zou J Z, Chen M X and Gong L H 2025 Neurocomputing 614 128834
[5] Zavvos E, Gerding E H, Yazdanpanah V, Maple C, Stein S, et al. 2021 IEEE Transactions on Intelligent Transportation Systems 23 10126
[6] Marasco E, Albanese M, Patibandla V V R, Vurity A and Sriram S S 2023 Security and Privacy 6 e261
[7] Ren H, Sun L, Guo J and Han C 2022 IEEE Transactions on Information Forensics and Security 17 2030
[8] Bedari A, Wang S and Yang W 2022 Sensors 22 7609
[9] Trivedi A K, Thounaojam D M and Pal S 2020 Computers & Security 90 101690
[10] Yang W, Wang S, Hu J, Zheng G and Valli C 2019 Symmetry 11 141
[11] Natgunanathan I, Mehmood A, Xiang Y, Beliakov G and Yearwood J 2016 IEEE Access 4 880
[12] Hellekalek P and Wegenkittl S 2003 ACM Transactions on Modeling and Computer Simulation (TOMACS) 13 322
[13] Yan X, Hu Q and Teng L 2025 Nonlinear Dyn. 113 1799
[14] Tao Y, Cui W, Wang S and Wang Y 2025 PloS One 20 e0310279
[15] Wang Y, Zhao Q, Zhang H, Li T, Xu W, Liu S and Su Y 2023 Applied Optics 62 1009
[16] Ye G and Guo L 2024 Nonlinear Dyn. 112 14593
[17] Hu L L, Chen M X,Wang M M and Zhou N R 2024 Chaos, Solitons & Fractals 188 115521
[18] Subramanian R, Ç içek S, Akgul A, Adam G, Karthikeyan A and Rajagopal K 2024 Complexity 2024 2005801
[19] Hagras E A, Aldosary S, Khaled H and Hassan T M 2023 Sensors 23 7843
[20] Ding C, Xue R and Niu S 2023 International Journal of Bifurcation and Chaos 33 2350084
[21] Zhou N R, Hu L L, Huang Z W, Wang M M and Luo G S 2024 Expert Systems with Applications 238 122052
[22] Guo Z, Chen S H, Zhou L and Gong L H 2024 Applied Mathematical Modelling 131 49
[23] Vijayakumar M and Ahilan A 2024 Ain Shams Engineering Journal 15 102620
[24] Wang M, Fu X, Yan X and Teng L 2024 Mathematics 12 638
[25] Zhu Y, Wang C, Sun J and Yu F 2023 Mathematics 11 767
[26] Jiang D, Tsafack N, Boulila W, Ahmad J and Barba-Franco J 2024 Expert Systems with Applications 236 121378
[27] Kumar S and Sharma D 2024 Artificial Intelligence Review 57 87
[28] Alawida M 2023 Journal of King Saud University-Computer and Information Sciences 35 101595
[1] Resonant tunneling diode cellular neural network with memristor coupling and its application in police forensic digital image protection
Fei Yu(余飞), Dan Su(苏丹), Shaoqi He(何邵祁), Yiya Wu(吴亦雅), Shankou Zhang(张善扣), and Huige Yin(尹挥戈). Chin. Phys. B, 2025, 34(5): 050502.
[2] Hybrid image encryption scheme based on hyperchaotic map with spherical attractors
Zhitang Han(韩智堂), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2025, 34(3): 030503.
[3] Quantum color image encryption: Dual scrambling scheme based on DNA codec and quantum Arnold transform
Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Shuang Wang(王爽), Kehan Wang(王柯涵), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2025, 34(1): 010305.
[4] A color image encryption scheme based on a 2D coupled chaotic system and diagonal scrambling algorithm
Jingming Su(苏静明), Shihui Fang(方士辉), Yan Hong(洪炎), and Yan Wen(温言). Chin. Phys. B, 2024, 33(7): 070502.
[5] Novel self-embedding holographic watermarking image encryption protection scheme
Linian Wang(王励年), Nanrun Zhou(周楠润), Bo Sun(孙博), Yinghong Cao(曹颖鸿), and Jun Mou(牟俊). Chin. Phys. B, 2024, 33(5): 050501.
[6] A lightweight symmetric image encryption cryptosystem in wavelet domain based on an improved sine map
Baichi Chen(陈柏池), Linqing Huang(黄林青), Shuting Cai(蔡述庭), Xiaoming Xiong(熊晓明), and Hui Zhang(张慧). Chin. Phys. B, 2024, 33(3): 030501.
[7] Efficient single-pixel imaging encrypted transmission based on 3D Arnold transformation
Zhen-Yu Liang(梁振宇), Chao-Jin Wang(王朝瑾), Yang-Yang Wang(王阳阳), Hao-Qi Gao(高皓琪), Dong-Tao Zhu(朱东涛), Hao-Li Xu(许颢砾), and Xing Yang(杨星). Chin. Phys. B, 2024, 33(3): 034204.
[8] Coexistence behavior of asymmetric attractors in hyperbolic-type memristive Hopfield neural network and its application in image encryption
Xiaoxia Li(李晓霞), Qianqian He(何倩倩), Tianyi Yu(余天意),Zhuang Cai(才壮), and Guizhi Xu(徐桂芝). Chin. Phys. B, 2024, 33(3): 030505.
[9] A chaotic hierarchical encryption/watermark embedding scheme for multi-medical images based on row-column confusion and closed-loop bi-directional diffusion
Zheyi Zhang(张哲祎), Jun Mou(牟俊), Santo Banerjee, and Yinghong Cao(曹颖鸿). Chin. Phys. B, 2024, 33(2): 020503.
[10] Enhancing visual security: An image encryption scheme based on parallel compressive sensing and edge detection embedding
Yiming Wang(王一铭), Shufeng Huang(黄树锋), Huang Chen(陈煌), Jian Yang(杨健), and Shuting Cai(蔡述庭). Chin. Phys. B, 2024, 33(1): 010502.
[11] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[12] Asymmetric image encryption algorithm based on a new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[13] Lossless embedding: A visually meaningful image encryption algorithm based on hyperchaos and compressive sensing
Xing-Yuan Wang(王兴元), Xiao-Li Wang(王哓丽), Lin Teng(滕琳), Dong-Hua Jiang(蒋东华), and Yongjin Xian(咸永锦). Chin. Phys. B, 2023, 32(2): 020503.
[14] Optical image encryption algorithm based on a new four-dimensional memristive hyperchaotic system and compressed sensing
Yang Du(都洋), Guoqiang Long(隆国强), Donghua Jiang(蒋东华), Xiuli Chai(柴秀丽), and Junhe Han(韩俊鹤). Chin. Phys. B, 2023, 32(11): 114203.
[15] Rucklidge-based memristive chaotic system: Dynamic analysis and image encryption
Can-Ling Jian(蹇璨岭), Ze-An Tian(田泽安), Bo Liang(梁波), Chen-Yang Hu(胡晨阳), Qiao Wang(王桥), and Jing-Xi Chen(陈靖翕). Chin. Phys. B, 2023, 32(10): 100503.
No Suggested Reading articles found!