Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 117601    DOI: 10.1088/1674-1056/ad72d3
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Crystal growth, structure and crystal field splitting and fitting of Yb:GdScO3

Jia-Hong Li(李加红)1,2,3, Qing-Li Zhang(张庆礼)1,3,†, Gui-Hua Sun(孙贵花)1,3,‡, Jin-Yun Gao(高进云)1,3, Ren-Qin Dou(窦仁勤)1,3, Xiao-Fei Wang(王小飞)1,3, and Shou-Jun Ding(丁守军)1,3,4
1 Key Laboratory of Photonic Devices and Materials of Anhui Province, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
2 University of Science and Technology of China, Hefei 230026, China;
3 Advanced Laser Technology Laboratory of Anhui Province, Hefei 230026, China;
4 School of Science and Engineering of Mathematics and Physics, Anhui University of Technology, Maanshan 243002, China
Abstract  A good quality (5 at.% Yb:GdScO$_{3}$) single crystal of $\varPhi30 {\rm mm}\times 37$ mm was grown successfully by the Czochralski method. Its structure is studied by the x-ray diffraction (XRD), and its atomic coordinates are obtained by Rietveld refinement. The crystal field energy level splitting of Yb$^{3+}$ in GdScO$_{3}$ is determined by employing the absorption and photoluminescence spectra at 8 K. Only $^{2}$F$_{7/2}$(4) is far from the ground state $^{2}$F$_{7/2}$(1) by 710 cm$^{-1}$ among the crystal field energy levels split from $^{2}$F$_{7/2}$, so it is more easier to realize the laser operation of $^{2}$F$_{5/2}$(1)$\to^{2}$F$_{7/2}$(4) with wavelength 1060 nm. The spin-orbit coupling parameters and intrinsic crystal field parameters (CFPs). The intrinsic crystal field parameters $\bar{B}_{k}$ ($k=2$, 4, 6) of the crystal were fitted by the superposition model. The CFPs evaluated with $\bar{B}_{k}$ and coordination factor are taken as the initial parameters to fit the crystal field energy levels of the crystal, and the crystal field parameters ${B}^{k}_{q}$ are obtained finally with the root-mean-square deviation 9 cm$^{-1}$. It is suggested that the ligand point charge, covalency and overlap interaction are slightly weaker than charge interpenetration and coulomb exchange interaction for Yb$^{3+}$ in GdScO$_{3}$. The obtained Hamiltonian parameters can be used to calculate crystal field energy levels and wave functions of Yb:GdScO$_{3}$ to analyze the mechanism of the luminescence or laser.
Keywords:  rare earth scandate      crystal field      photoluminescence      laser crystal  
Received:  17 June 2024      Revised:  22 August 2024      Accepted manuscript online:  23 August 2024
PACS:  76.30.Kg (Rare-earth ions and impurities)  
  75.10.Dg (Crystal-field theory and spin Hamiltonians)  
  78.55.-m (Photoluminescence, properties and materials)  
  42.55.Tv (Photonic crystal lasers and coherent effects)  
Fund: This work was supported by the National Key Research and Development Program of China (Grant Nos. 2022YFB3605700 and 2023YFB3507403), the National Natural Science Foundation of China (Grant No. 52272011), the Youth Innovation Promotion Association of CAS (Grant No. 2023463), Plan for Anhui Major Provincial Science & Technology Project (Grant No. 202203a05020002), and Open Project of Advanced Laser Technology Laboratory of Anhui Province (Grant No. AHL20220ZR04).
Corresponding Authors:  Qing-Li Zhang, Gui-Hua Sun     E-mail:  zql@aiofm.ac.cn;ghsun@aiofm.ac.cn

Cite this article: 

Jia-Hong Li(李加红), Qing-Li Zhang(张庆礼), Gui-Hua Sun(孙贵花), Jin-Yun Gao(高进云), Ren-Qin Dou(窦仁勤), Xiao-Fei Wang(王小飞), and Shou-Jun Ding(丁守军) Crystal growth, structure and crystal field splitting and fitting of Yb:GdScO3 2024 Chin. Phys. B 33 117601

[1] Wang D, Hou W, Li N, Xue Y, Wang Q, Xu X, Li D, Zhao H and Xu J 2019 Opt. Mater. Express 9 4218
[2] Schäfer A, Besmehn A, Luysberg M, Winden A, Stoica T, Schnee M, Zander W, Niu G, Schroeder T, Mantl S, Hardtdegen H, Mikulics M and Schubert J 2014 Semicond Sci. Technol. 29 075005
[3] Rumyantsev S, Stillman W, Shur M, Heeg T, Schlom D G, Koveshnikov S, Kambhampati R, Tokranov V and Oktyabrsky S 2012 Int. J. High Speed Electron. Syst. 20 105
[4] Sheng J M, Kan X C, Ge H, Yuan P Q, Zhang L, Zhao N, Song Z M, Yao Y Y, Tang J N, Wang S M, Tian M L, Tong X and Wu L S 2020 Chin. Phys. B 29 057053
[5] Lin S H, Lin Z Q and Chen C W 2021 Ceram. Int. 47 16828
[6] Schäfer A, Rahmanizadeh K, Bihlmayer G, Luysberg M, Wendt F, Besmehn A, Fox A, Schnee M, Niu G, Schroeder T, Mantl S, Hardtdegen H, Mikulics M and Schubert J 2015 J. Alloys Compd. 651 514
[7] Uecker R, Velickov B, Klimm D, Bertram R, Bernhagen M, Rabe M, Albrecht M, Fornari R and Schlom D G 2008 J. Cryst. Growth 310 2649
[8] Chaix-Pluchery O and Kreisel J 2009 J. Phys.: Condens. Matter. 21 175901
[9] Mansley Z R, Mizzi C A, Koirala P, Wen J and Marks L D 2020 Phys. Rev. Mater. 4 045003
[10] Grover V, Shukla R, Jain D, Deshpande S K, Arya A, Pillai C G S and Tyagi A K 2012 Chem. Mater. 24 2186
[11] Li Q, Dong J, Wang Q, Xue Y, Tang H, Xu X and Xu J 2020 Opt. Mater. 109 110298
[12] Aamir M, Bibi I and Ata S 2021 Ceram. Int. 47 16696
[13] Jia J H, Ke Y J, Zhang X X, Wang J F, Su L, Wu Y D and Xia Z C 2019 J. Alloys Compd. 803 992
[14] Wu Y D, Chen H, Hua J Y, Qin Y L, Ma X H, Wei Y Y and Zi Z F 2019 Ceram. Int. 45 13094
[15] Chopelas A 2011 Phys. Chem. Miner. 38 709
[16] P N R S, Panda D P and Sundaresan A 2021 J. Phys. Chem. C 125 10803
[17] Hidde J, Guguschev C, Ganschow S and Klimm D 2018 J. Alloys Compd. 738 415
[18] Chaix-Pluchery O and Kreisel J 2011 Phase Transit. 84 542
[19] Veličkov B, Kahlenberg V, Bertram R and Bernhagen M 2007 Z. für Kristallogr. 222 466
[20] Mizzi C A, Koirala P and Marks L D 2018 Phys. Rev. Mater. 2 025001
[21] Levy M 2004 Solid State Ion. 175 349
[22] Peng F, Liu W, Zhang Q, Luo J, Sun D, Sun G, Zhang D and Wang X 2018 J. Lumin. 201 176
[23] Ruffo A, Mozzati M C, Albini B, Galinetto P and Bini M 2020 J. Mater. Sci.: Mater. Electron. 31 18263
[24] Paull R J, Mansley Z R, Ly T, Marks L D and Poeppelmeier K R 2018 Inorg. Chem. 57 4104
[25] Chaix-Pluchery O, Sauer D and Kreisel J 2010 J. Phys.: Condens. Matter. 22 165901
[26] Peng F, Liu W, Luo J, Sun D, Chen Y, Zhang H, Ding S and Zhang Q 2018 Crystengcomm 20 6291
[27] Gupta S K, Grover V and Shukla R 2016 Chem. Eng. J 283 114
[28] Li S, Fang Q, Zhang Y, Tao S, Zhang J, Quan C, Sun D, Zhao C and Hang Y 2021 Opt. Laser Technol. 143 107345
[29] Hu D, Dong J, Tian J, Wang W, Wang Q, Xue Y, Xu X and Xu J 2021 J. Lumin. 238 118243
[30] Li Q, Dong J, Wang Q, Zhao H, Xue Y, Tang H, Xu X and Xu J 2021 J. Lumin. 230 117681
[31] Hou W, Zhao H, Qin Z, Liu J, Wang D, Xue Y, Wang Q, Xie G, Xu X and Xu J 2020 Opt. Mater. Express 10 2730
[32] Liu Z, Toci G, Pirri A, Patrizi B, Feng Y, Wei J, Wu F, Yang Z, Vannini M and Li J 2020 J. Adv. Ceram. 9 674
[33] Ma J, Yang F, Gao W, Xiaodong X, Jun X, Shen D and Tang D 2021 Opt. Lett. 46 2328
[34] lvarez-Pérez J O, Cano-Torres J M, Ruiz A, Serrano M D, Cascales C and Zaldo C 2021 J. Mater. Chem. C 9 4628
[35] Soharab M, Bhaumik I, Bhatt R, Saxena A, Khan S, Goutam U K and Karnal A K 2021 J. Lumin. 231 117736
[36] Wang W, Jiang B, Feng T, Fan J, Ma W, Guo W, Li J and Zhang L 2021 J. Am. Ceram. Soc. 104 6064
[37] Zhao Y, Wang Q, Meng L, Yao Y, Liu S, Cui N, Su L, Zheng L, Zhang H and Zhang Y 2021 Chin. Opt. Lett. 19 041405
[38] Petrov V A, Petrov V V, Kuptsov G V, Laptev A V, Galutskiy V V and Stroganova E V 2021 Laser Phys. 31 035003
[39] Chen J, Dong L, Liu F, Xu H and Liu J 2021 Crystengcomm 23 427
[40] Demirbas U, Kellert M, Thesinga J, Hua Y, Reuter S, Krtner F X and Pergament M 2021 Appl. Phys. B 127 46
[41] Basyrova L, Loiko P, Maksimov R, Shitov V, Serres J M, Griebner U, Petrov V, Aguiló M, Díaz F and Mateos X 2021 Ceram. Int. 47 6633
[42] Volokitina A, David S P, Loiko P, Subbotin K, Titov A, Lis D, Solé R M, Jambunathan V, Lucianetti A, Mocek T, Camy P, Chen W, Griebner U, Petrov V, Aguiló M, Díaz F and Mateos X 2021 J. Lumin. 231 117811
[43] Stephen S K and Varghese T 2021 Mater. Charact. 174 110985
[44] Wang A, Zhang J, Ye S, Ma X, Wu B, Wang S, Wang F, Wang T, Zhang B and Jia Z 2021 Crystals 11 78
[45] Zhang Y, Li S, Du X, Guo J, Gong Q, Tao S, Zhang P, Fang Q, Pan S, Zhao C, Liang X and Hang Y 2021 Opt. Lett. 46 3641
[46] Wang X M, Wang X F and Zhang Q L 2015 J. Synth. Cryst. 44 1465
[47] Newman D J 2007 Crystal Field Handbook 2nd Edn. (New York: Cambridge University Press) p. 83
[48] Zhang Q L, Ning K J, Ding L H, Liu W P, Zhou W L, Jiang H H and Yin S T 2010 Chin. Phys. B 19 087501
[49] Zhang Q L, Ning K J, Ding L H, Liu W P, Sun D L, Jiang H H and Yin S T 2013 Chin. Phys. B 22 067105
[1] Anomalous photoluminescence enhancement and resonance charge transfer in type-II 2D lateral heterostructures
Chun-Yan Zhao(赵春艳), Sha-Sha Li(李莎莎), and Yong Yan(闫勇). Chin. Phys. B, 2023, 32(8): 087801.
[2] On the origin of carrier localization in AlInAsSb digital alloy
Wen-Guang Zhou(周文广), Dong-Wei Jiang(蒋洞微), Xiang-Jun Shang(尚向军), Dong-Hai Wu(吴东海), Fa-Ran Chang(常发冉), Jun-Kai Jiang(蒋俊锴), Nong Li(李农), Fang-Qi Lin(林芳祁), Wei-Qiang Chen(陈伟强), Hong-Yue Hao(郝宏玥), Xue-Lu Liu(刘雪璐), Ping-Heng Tan(谭平恒), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(8): 088501.
[3] Exploring plasmons weakly coupling to perovskite excitons with tunable emission by energy transfer
Guo-Dong Yan(严国栋), Zhen-Hua Zhang(张振华), Heng Guo(郭衡), Jin-Ping Chen(陈金平),Qing-Song Jiang(蒋青松), Qian-Nan Cui(崔乾楠), Zeng-Liang Shi(石增良), and Chun-Xiang Xu(徐春祥). Chin. Phys. B, 2023, 32(6): 067302.
[4] Two-photon absorption of FAPbBr3 perovskite nanocrystals
Xuanyu Zhang(张轩宇), Shuyu Xiao(肖书宇), Xiongbin Wang(王雄彬), Tingchao He(贺廷超), and Rui Chen(陈锐). Chin. Phys. B, 2023, 32(6): 064212.
[5] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[6] Temperature-dependent photoluminescence of lead-free cesium tin halide perovskite microplates
Jiayu Tan(谭佳雨), Yixuan Zhou(周译玄), De Lu(卢德), Xukun Feng(冯旭坤), Yuqi Liu(刘玉琪), Mengen Zhang(张蒙恩), Fangzhengyi Lu(卢方正一), Yuanyuan Huang(黄媛媛), and Xinlong Xu(徐新龙). Chin. Phys. B, 2023, 32(11): 117802.
[7] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[8] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[9] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[10] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[11] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[12] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[13] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[14] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[15] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
No Suggested Reading articles found!