CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Crystal growth, structure and crystal field splitting and fitting of Yb:GdScO3 |
Jia-Hong Li(李加红)1,2,3, Qing-Li Zhang(张庆礼)1,3,†, Gui-Hua Sun(孙贵花)1,3,‡, Jin-Yun Gao(高进云)1,3, Ren-Qin Dou(窦仁勤)1,3, Xiao-Fei Wang(王小飞)1,3, and Shou-Jun Ding(丁守军)1,3,4 |
1 Key Laboratory of Photonic Devices and Materials of Anhui Province, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; 2 University of Science and Technology of China, Hefei 230026, China; 3 Advanced Laser Technology Laboratory of Anhui Province, Hefei 230026, China; 4 School of Science and Engineering of Mathematics and Physics, Anhui University of Technology, Maanshan 243002, China |
|
|
Abstract A good quality (5 at.% Yb:GdScO$_{3}$) single crystal of $\varPhi30 {\rm mm}\times 37$ mm was grown successfully by the Czochralski method. Its structure is studied by the x-ray diffraction (XRD), and its atomic coordinates are obtained by Rietveld refinement. The crystal field energy level splitting of Yb$^{3+}$ in GdScO$_{3}$ is determined by employing the absorption and photoluminescence spectra at 8 K. Only $^{2}$F$_{7/2}$(4) is far from the ground state $^{2}$F$_{7/2}$(1) by 710 cm$^{-1}$ among the crystal field energy levels split from $^{2}$F$_{7/2}$, so it is more easier to realize the laser operation of $^{2}$F$_{5/2}$(1)$\to^{2}$F$_{7/2}$(4) with wavelength 1060 nm. The spin-orbit coupling parameters and intrinsic crystal field parameters (CFPs). The intrinsic crystal field parameters $\bar{B}_{k}$ ($k=2$, 4, 6) of the crystal were fitted by the superposition model. The CFPs evaluated with $\bar{B}_{k}$ and coordination factor are taken as the initial parameters to fit the crystal field energy levels of the crystal, and the crystal field parameters ${B}^{k}_{q}$ are obtained finally with the root-mean-square deviation 9 cm$^{-1}$. It is suggested that the ligand point charge, covalency and overlap interaction are slightly weaker than charge interpenetration and coulomb exchange interaction for Yb$^{3+}$ in GdScO$_{3}$. The obtained Hamiltonian parameters can be used to calculate crystal field energy levels and wave functions of Yb:GdScO$_{3}$ to analyze the mechanism of the luminescence or laser.
|
Received: 17 June 2024
Revised: 22 August 2024
Accepted manuscript online: 23 August 2024
|
PACS:
|
76.30.Kg
|
(Rare-earth ions and impurities)
|
|
75.10.Dg
|
(Crystal-field theory and spin Hamiltonians)
|
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
42.55.Tv
|
(Photonic crystal lasers and coherent effects)
|
|
Fund: This work was supported by the National Key Research and Development Program of China (Grant Nos. 2022YFB3605700 and 2023YFB3507403), the National Natural Science Foundation of China (Grant No. 52272011), the Youth Innovation Promotion Association of CAS (Grant No. 2023463), Plan for Anhui Major Provincial Science & Technology Project (Grant No. 202203a05020002), and Open Project of Advanced Laser Technology Laboratory of Anhui Province (Grant No. AHL20220ZR04). |
Corresponding Authors:
Qing-Li Zhang, Gui-Hua Sun
E-mail: zql@aiofm.ac.cn;ghsun@aiofm.ac.cn
|
Cite this article:
Jia-Hong Li(李加红), Qing-Li Zhang(张庆礼), Gui-Hua Sun(孙贵花), Jin-Yun Gao(高进云), Ren-Qin Dou(窦仁勤), Xiao-Fei Wang(王小飞), and Shou-Jun Ding(丁守军) Crystal growth, structure and crystal field splitting and fitting of Yb:GdScO3 2024 Chin. Phys. B 33 117601
|
[1] Wang D, Hou W, Li N, Xue Y, Wang Q, Xu X, Li D, Zhao H and Xu J 2019 Opt. Mater. Express 9 4218 [2] Schäfer A, Besmehn A, Luysberg M, Winden A, Stoica T, Schnee M, Zander W, Niu G, Schroeder T, Mantl S, Hardtdegen H, Mikulics M and Schubert J 2014 Semicond Sci. Technol. 29 075005 [3] Rumyantsev S, Stillman W, Shur M, Heeg T, Schlom D G, Koveshnikov S, Kambhampati R, Tokranov V and Oktyabrsky S 2012 Int. J. High Speed Electron. Syst. 20 105 [4] Sheng J M, Kan X C, Ge H, Yuan P Q, Zhang L, Zhao N, Song Z M, Yao Y Y, Tang J N, Wang S M, Tian M L, Tong X and Wu L S 2020 Chin. Phys. B 29 057053 [5] Lin S H, Lin Z Q and Chen C W 2021 Ceram. Int. 47 16828 [6] Schäfer A, Rahmanizadeh K, Bihlmayer G, Luysberg M, Wendt F, Besmehn A, Fox A, Schnee M, Niu G, Schroeder T, Mantl S, Hardtdegen H, Mikulics M and Schubert J 2015 J. Alloys Compd. 651 514 [7] Uecker R, Velickov B, Klimm D, Bertram R, Bernhagen M, Rabe M, Albrecht M, Fornari R and Schlom D G 2008 J. Cryst. Growth 310 2649 [8] Chaix-Pluchery O and Kreisel J 2009 J. Phys.: Condens. Matter. 21 175901 [9] Mansley Z R, Mizzi C A, Koirala P, Wen J and Marks L D 2020 Phys. Rev. Mater. 4 045003 [10] Grover V, Shukla R, Jain D, Deshpande S K, Arya A, Pillai C G S and Tyagi A K 2012 Chem. Mater. 24 2186 [11] Li Q, Dong J, Wang Q, Xue Y, Tang H, Xu X and Xu J 2020 Opt. Mater. 109 110298 [12] Aamir M, Bibi I and Ata S 2021 Ceram. Int. 47 16696 [13] Jia J H, Ke Y J, Zhang X X, Wang J F, Su L, Wu Y D and Xia Z C 2019 J. Alloys Compd. 803 992 [14] Wu Y D, Chen H, Hua J Y, Qin Y L, Ma X H, Wei Y Y and Zi Z F 2019 Ceram. Int. 45 13094 [15] Chopelas A 2011 Phys. Chem. Miner. 38 709 [16] P N R S, Panda D P and Sundaresan A 2021 J. Phys. Chem. C 125 10803 [17] Hidde J, Guguschev C, Ganschow S and Klimm D 2018 J. Alloys Compd. 738 415 [18] Chaix-Pluchery O and Kreisel J 2011 Phase Transit. 84 542 [19] Veličkov B, Kahlenberg V, Bertram R and Bernhagen M 2007 Z. für Kristallogr. 222 466 [20] Mizzi C A, Koirala P and Marks L D 2018 Phys. Rev. Mater. 2 025001 [21] Levy M 2004 Solid State Ion. 175 349 [22] Peng F, Liu W, Zhang Q, Luo J, Sun D, Sun G, Zhang D and Wang X 2018 J. Lumin. 201 176 [23] Ruffo A, Mozzati M C, Albini B, Galinetto P and Bini M 2020 J. Mater. Sci.: Mater. Electron. 31 18263 [24] Paull R J, Mansley Z R, Ly T, Marks L D and Poeppelmeier K R 2018 Inorg. Chem. 57 4104 [25] Chaix-Pluchery O, Sauer D and Kreisel J 2010 J. Phys.: Condens. Matter. 22 165901 [26] Peng F, Liu W, Luo J, Sun D, Chen Y, Zhang H, Ding S and Zhang Q 2018 Crystengcomm 20 6291 [27] Gupta S K, Grover V and Shukla R 2016 Chem. Eng. J 283 114 [28] Li S, Fang Q, Zhang Y, Tao S, Zhang J, Quan C, Sun D, Zhao C and Hang Y 2021 Opt. Laser Technol. 143 107345 [29] Hu D, Dong J, Tian J, Wang W, Wang Q, Xue Y, Xu X and Xu J 2021 J. Lumin. 238 118243 [30] Li Q, Dong J, Wang Q, Zhao H, Xue Y, Tang H, Xu X and Xu J 2021 J. Lumin. 230 117681 [31] Hou W, Zhao H, Qin Z, Liu J, Wang D, Xue Y, Wang Q, Xie G, Xu X and Xu J 2020 Opt. Mater. Express 10 2730 [32] Liu Z, Toci G, Pirri A, Patrizi B, Feng Y, Wei J, Wu F, Yang Z, Vannini M and Li J 2020 J. Adv. Ceram. 9 674 [33] Ma J, Yang F, Gao W, Xiaodong X, Jun X, Shen D and Tang D 2021 Opt. Lett. 46 2328 [34] lvarez-Pérez J O, Cano-Torres J M, Ruiz A, Serrano M D, Cascales C and Zaldo C 2021 J. Mater. Chem. C 9 4628 [35] Soharab M, Bhaumik I, Bhatt R, Saxena A, Khan S, Goutam U K and Karnal A K 2021 J. Lumin. 231 117736 [36] Wang W, Jiang B, Feng T, Fan J, Ma W, Guo W, Li J and Zhang L 2021 J. Am. Ceram. Soc. 104 6064 [37] Zhao Y, Wang Q, Meng L, Yao Y, Liu S, Cui N, Su L, Zheng L, Zhang H and Zhang Y 2021 Chin. Opt. Lett. 19 041405 [38] Petrov V A, Petrov V V, Kuptsov G V, Laptev A V, Galutskiy V V and Stroganova E V 2021 Laser Phys. 31 035003 [39] Chen J, Dong L, Liu F, Xu H and Liu J 2021 Crystengcomm 23 427 [40] Demirbas U, Kellert M, Thesinga J, Hua Y, Reuter S, Krtner F X and Pergament M 2021 Appl. Phys. B 127 46 [41] Basyrova L, Loiko P, Maksimov R, Shitov V, Serres J M, Griebner U, Petrov V, Aguiló M, Díaz F and Mateos X 2021 Ceram. Int. 47 6633 [42] Volokitina A, David S P, Loiko P, Subbotin K, Titov A, Lis D, Solé R M, Jambunathan V, Lucianetti A, Mocek T, Camy P, Chen W, Griebner U, Petrov V, Aguiló M, Díaz F and Mateos X 2021 J. Lumin. 231 117811 [43] Stephen S K and Varghese T 2021 Mater. Charact. 174 110985 [44] Wang A, Zhang J, Ye S, Ma X, Wu B, Wang S, Wang F, Wang T, Zhang B and Jia Z 2021 Crystals 11 78 [45] Zhang Y, Li S, Du X, Guo J, Gong Q, Tao S, Zhang P, Fang Q, Pan S, Zhao C, Liang X and Hang Y 2021 Opt. Lett. 46 3641 [46] Wang X M, Wang X F and Zhang Q L 2015 J. Synth. Cryst. 44 1465 [47] Newman D J 2007 Crystal Field Handbook 2nd Edn. (New York: Cambridge University Press) p. 83 [48] Zhang Q L, Ning K J, Ding L H, Liu W P, Zhou W L, Jiang H H and Yin S T 2010 Chin. Phys. B 19 087501 [49] Zhang Q L, Ning K J, Ding L H, Liu W P, Sun D L, Jiang H H and Yin S T 2013 Chin. Phys. B 22 067105 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|